

NEURAL NETWORKS

Jim Senft Sander Stuut Bart van den Elshout Bart Lammers

LECTURE

Part 1: Biological neural networks

Part 2: Artificial neural networks

Part 3: Real life applications

Part 4: Data preparation

Part 5: Method application & Pay-off analysis

PART 1

Biological Neural Networks

BIOLOGICAL NEURAL NETWORKS

Biological

Artificial

BIOLOGICAL NEURAL NETWORK

- Artificial neural networks are based on biological neural networks.
- By gaining an understanding of the basic principles underlying a biological neural network, it is much easier to grasp the concept of an artificial neural network.
- Properties of biological neural networks:
 - intuitive interaction with data
 - pattern recognition
 - learning capability
- Application of same properties in artificial neural networks.

NEURON

 A synapse is a structure that permits a neuron to pass a signal to another neuron or cell.

SYNAPTIC PATHWAYS

- Information travels from neuron to neuron through synaptic pathways.
- Data travels several complex routes through the network, which may be back and forth, resulting in an interpretation of the data, as well as learning.

SYNAPTIC PATHWAYS

- In the grand scheme, these synaptic pathways allow organisms to learn and adapt.
- "How" this works is unknown. However, we understand the basic principle of it, which gives rise to our abilities such as learning.

EXAMPLE 1: LEARNING IN YOUNG ORGANISMS

- In early life, children develop huge amounts of synaptic pathways.
- This is beneficial, as it prepares an organism for many different possible environments (hence, many different sorts of data to interact with).
 For this reason, young organisms have greater learning ability.
- As organisms grow older, synaptic pathways are cut off. This increases the efficiency of the network.

EXAMPLE 2: LATENT INHIBITION IN BIOLOGICAL NEURAL NETWORKS

Latent inhibition – ability to filter irrelevant data

- ADD many synapses, low latent inhibition
- Result: preferred output not achieved, due to lack of proper "data reduction"

CONCEPT OF A NEURAL NETWORK

• Three conceptual phases:

```
Input – Processing – Output
```

- 1. Data goes in.
- 2. Data is processed.
- 3. Data comes out.

(sensory experience, etc.)
(synaptic activity)
(knowledge, understanding)

CONCEPT OF A NEURAL NETWORK

Three conceptual phases:

Input – Processing – Output

1. Data goes in.

(sensory experience, etc.)

- 2. Data is processed. (synaptic activity)
- 3. Data comes out. (knowledge, understanding)

The input is known. The output is known. The processing is a "black box".

Whatever happens in phase 2, it enables biological systems to interact intuitively with data.

PREMISE OF AN ARTIFICIAL NEURAL NETWORK

- Biological neural networks enable organisms to interact intuitively with data. Hence they are able to learn.
- Ability to recognize patterns.
- Pattern recognition leads to predictive capability.
- Successful concept for how to interact with data intuitively.
- When applied to software or other systems, the benefits might be similar.

PART 2

Artificial Neural Networks

Artificial Neural Network model

Single-layer Artificial Neural Network Perceptron

Multilayer Artificial Neural Network Multilayer Perceptron

ERASMUS SCHOOL OF ECONOMICS

19

Linear function

Sigmoid function

Tanh function

Sign function

Then we apply backpropagation

R.

All weights are good and the network has trained itself

PART 3 Real Life Applications

REAL LIFE APPLICATIONS?

- Predictive models
- Artificial intelligence
- Robotics
- Etc.

VIC: Vision guided Intelligent Car

Input: 2D camera + human driving observation

Output: Correct driving technique

BUSINESS INTELLIGENCE

- We set the conditions, such that the neural network will learn from the data in such a way that our desired output is achieved.
- What we control:
- input layer
- output layer
- amount of hidden layers
- amount of nodes within hidden layer
- What we do not control:

- whatever happens in the hidden layer

 Therefore: the inner workings of an artificial neural network in data mining, are difficult, if not impossible to interpret.

NEURAL NETWORKS IN BUSINESS INTELLIGENCE

Benefits:

- advanced pattern recognition
- relatively accurate predictions

Drawbacks:

- difficult to interpret the inner workings
- the bigger the network, the longer it takes to compute
- sensitivity to overfitting

PART 4Data Preparation

DATA PREPARATION

A weakness of the neural network is that it can easily overfit the data.

Overfitting has a negative effect on the predictive capabilities of the neural networks because it will predict the noise in the data instead of the overall patterns.

It is important to limit the number of training epochs and not to overtrain the model.

Data cleaning and dimensionality Reduction can also decrease the chance of overfitting.

DATA PREPARATION

- 1. Cleaning data removing outliers
- 2. Normalisation
- 3. Dimension reduction
 - Principal Component Analysis
 - Correlation Analysis
- 4. Rescaling

DATA CLEANING

Removing outliers 1-dimensional through sorting 2-dimensional through scatter plot

NORMALISATION

Because the variables do not have the same scale, normalization is required.

For instance:

- ■TIMELR: [0,0 209,0]
- ■FRQRES: [0,0 1,0]

$$\frac{X-\mu}{\sigma}$$

The normalized values of the variables are computed by subtracting the mean and deviding the result by the standard deviation.

DIMENSION REDUCTION

Principal Component Analysis

- Helps us to summarize the different dimension of the data in factors
- The original data is a linear combination of the factors
- Some correlation between variables in de dataset is required for PCA

l '	∠,905	42,323	42,323	2,900	42,323	42,323
2	1,392	19,890	62,212	1,392	19,890	62,212
3	1,121	16,021	78,233	1,121	16,021	78,233
4	,955	13,640	91,873	,955	13,640	91,873
5	,321	4,590	96,463	,321	4,590	96,463
6	,164	2,345	98,809	,164	2,345	98,809
7	,083	1,191	100,000	,083	1,191	100,000

Extraction Method: Principal Component Analysis.

		Component										
	1	2	3	4	5	6	7					
zAVGDON	,929	,204	,074	,139	,148	-,020	-,221					
ZANNDON	,884	,269	-,214	-,064	,157	-,221	,149					
zFRQRES	,720	-,607	-,099	,028	,188	,249	,072					
zTIMELR	-,685	,583	-,014	,128	,403	,105	,023					
ZLSTDON	,567	,719	,210	,112	-,256	,187	,065					
TIMECI	000	227	002	540	0.50	002	052					

1	∠,905	42,323	42,323	2,900	42,323	42,323
2	1,392	19,890	62,212	1,392	19,890	62,212
3	1,121	16,021	78,233	1,121	16,021	78,233
4	,955	13,640	91,873	,955	13,640	91,873
5	,321	4,590	96,463	,321	4,590	96,463
6	,164	2,345	98,809	,164	2,345	98,809
7	,083	1,191	100,000	,083	1,191	100,000

Extraction Method: Principal Component Analysis.

		Component										
	1	2	3	4	5	6	7					
ZAVGDON	,929	,204	,074	,139	,148	-,020	-,221					
ZANNDON	,884	,269	-,214	-,064	,157	-,221	,149					
zFRQRES	,720	-,607	-,099	,028	,188	,249	,072					
zTIMELR	-,685	,583	-,014	,128	,403	,105	,023					
ZLSTDON	,567	,719	,210	,112	-,256	,187	,065					
-TIME OL	000	227	002	540	050	000	052					

	2,905	42,323	42,323	2,305	42,323	42,323
2	1,392	19,890	62,212	1,392	19,890	62,212
3	1,121	16,021	78,233	1,121	16,021	78,233
4	,955	13,640	91,873	,955	13,640	91,873
5	,321	4,590	96,463	,321	4,590	96,463
6	,164	2,345	98,809	,164	2,345	98,809
7	,083	1,191	100,000	,083	1,191	100,000

Extraction Method: Principal Component Analysis.

		Component											
	1	2	3	4	5	6	7						
zAVGDON	,929	,204	,074	,139	,148	-,020	-,221						
ZANNDON	,884	,269	-,214	-,064	,157	-,221	,149						
zFRQRES	,720	-,607	-,099	,028	,188	,249	,072						
zTIMELR	-,685	,583	-,014	,128	,403	,105	,023						
zLSTDON	,567	,719	,210	,112	-,256	,187	,065						
	000	227	002	540	050	000	052						

	2,905	42,323	42,323	2,905	42,323	42,323
2	1,392	19,890	62,212	1,392	19,890	62,212
3	1,121	16,021	78,233	1,121	16,021	78,233
4	,955	13,640	91,873	,955	13,640	91,873
5	,321	4,590	96,463	,321	4,590	96,463
6	,164	2,345	98,809	,164	2,345	98,809
7	,083	1,191	100,000	,083	1,191	100,000

Extraction Method: Principal Component Analysis.

		Component										
	1	2	3	4	5	6	7					
zAVGDON	,929	,204	,074	,139	,148	-,020	-,221					
ZANNDON	,884	,269	-,214	-,064	,157	-,221	,149					
zFRQRES	,720	-,607	-,099	,028	,188	,249	,072					
zTIMELR	-,685	,583	-,014	,128	,403	,105	,023					
ZLSTDON	,567	,719	,210	,112	-,256	,187	,065					
TIMECI	000	227	002	540	0.50	000	052					

1	∠,905	42,323	42,323	2,905	42,323	42,323
2	1,392	19,890	62,212	1,392	19,890	62,212
3	1,121	16,021	78,233	1,121	16,021	78,233
4	,955	13,640	91,873	,955	13,640	91,873
5	,321	4,590	96,463	,321	4,590	96,463
6	,164	2,345	98,809	,164	2,345	98,809
7	,083	1,191	100,000	,083	1,191	100,000

Extraction Method: Principal Component Analysis.

		Component											
	1	2	3	4	5	6	7						
zAVGDON	,929	,204	,074	,139	,148	-,020	-,221						
ZANNDON	,884	,269	-,214	-,064	,157	-,221	,149						
zFRQRES	,720	-,607	-,099	,028	,188	,249	,072						
zTIMELR	-,685	,583	-,014	,128	,403	,105	,023						
ZLSTDON	,567	,719	,210	,112	-,256	,187	,065						
TIMECI	000	227	002	540	0.50	000	052						

By trial and error, we discovered that the Neural Network has the highest predictive accuracy with all seven factors.

Thus, we continued our with seven initial variables.

(Not the factors!)

ZTIMELR	Pearson Correlation	1	-,064 ~~~	-,739	-,115	-,448 ~~~	-,039	-,410
	Sig. (2-tailed)		,000	,000	,000	,000	,013	,000
	Ν	4025	4025	4025	4025	4025	4025	4025
ZTIMECL	Pearson Correlation	-,064**	1	,073	,065	,094	,044**	-,225
	Sig. (2-tailed)	,000		,000	,000	,000	,005	,000
	N	4025	4025	4025	4025	4025	4025	4025
zFRQRES	Pearson Correlation	-,739	,073	1	-,017	,549	-,043	,478
	Sig. (2-tailed)	,000	,000		,287	,000	,007	,000
	N	4025	4025	4025	4025	4025	4025	4025
ZMEDTOR	Pearson Correlation	-,115**	,065**	-,017	1	,043	,097**	,023
	Sig. (2-tailed)	,000	,000	,287		,006	,000	,142
	N	4025	4025	4025	4025	4025	4025	4025
zAVGDON	Pearson Correlation	-,448**	,094**	,549	,043	1	,648	,847**
	Sig. (2-tailed)	,000	,000	,000	,006		,000	,000
	N	4025	4025	4025	4025	4025	4025	4025
zLSTDON	Pearson Correlation	-,039	,044**	-,043	,097**	,648**	1	,571**
	Sig. (2-tailed)	,013	,005	,007	,000	,000		,000
	N	4025	4025	4025	4025	4025	4025	4025
ZANNDON	Pearson Correlation	-,410	-,225	,478	,023	,847**	,571**	1
	Sig. (2-tailed)	,000	,000	,000	,142	,000	,000	
	N	4025	4025	4025	4025	4025	4025	4025

ZTIMELR	Pearson Correlation	1	-,064 ~~	-,739	-,115	-,448 ~~~	-,039	-,410
	Sig. (2-tailed)		,000	,000	,000	,000	,013	,000
	Ν	4025	4025	4025	4025	4025	4025	4025
ZTIMECL	Pearson Correlation	-,064**	1	,073	,065	,094	,044**	-,225
	Sig. (2-tailed)	,000		,000	,000	,000	,005	,000
	Ν	4025	4025	4025	4025	4025	4025	4025
zFRQRES	Pearson Correlation	-,739**	,073	1	-,017	,549	-,043	,478
	Sig. (2-tailed)	,000	,000		,287	,000	,007	,000
	Ν	4025	4025	4025	4025	4025	4025	4025
ZMEDTOR	Pearson Correlation	-,115	,065	-,017	1	,043	,097**	,023
	Sig. (2-tailed)	,000	,000	,287		,006	,000	,142
	Ν	4025	4025	4025	4025	4025	4025	4025
ZAVGDON	Pearson Correlation	-,448**	,094**	,549	,043	1	,648	,847
	Sig. (2-tailed)	,000	,000	,000	,006		,000	,000
	Ν	4025	4025	4025	4025	4025	4025	4025
ZLSTDON	Pearson Correlation	-,039	,044**	-,043	,097**	,648	1	,571
	Sig. (2-tailed)	,013	,005	,007	,000	,000		,000
	Ν	4025	4025	4025	4025	4025	4025	4025
ZANNDON	Pearson Correlation	-,410**	-,225	,478	,023	,847**	,571	1
	Sig. (2-tailed)	,000	,000	,000	,142	,000	,000	
1	N	4025	4025	4025	4025	4025	4025	4025

We observe four high correlations:

zAVGDON → zANNDON
 zTIMELR → zFREQRES
 zAVGDON → zLSTDON
 zFREQRES → zAVGDON

By trial and error, we discovered that the neural network produces the highest predictive accuracy when we leave variable zAVGDON out.

This is in line with our expectations because AVGDON contains the least information about the respondent, in comparison to ANNDON.

RESCALING

The neural networks performs best when all variables are on a scale of [-1, 1].

This is because of the functions that are used in the nodes of the hidden layer.

RESCALING

Figure 5.18. Types of activation functions in artificial neural networks.

PART 5

Method application & Pay-off analysis

METHOD APPLICATION

Training the data

R.

E

E

🗟 🕥 🖩 🔂 🔊 🗖			() Home [Design (F8)	Results (F9)	Wizard
📑 Operators 🛛 🖉 🖨 🔟	Process 🕱 🚰 🖘 🔟		📑 Paran	neters 🛛	🔹 🕜 Help	×
🤣 🗸 Search 🔊 🖡	(= → → → ↑ Process → % Validation →	J	🚨 🖷 🦷	5 🖓 🤋	x 🖡 🗸	
🗈 🦳 Repository Access (6)	Training Testing			💡 Neural Net		
⊕-				rs	🛛 🖉 Edit List	(1)
 □ Data Transformation (114) 	tra	ave			[
Modeling (118)	Edit Parameter List: hidden layers Describes the name and the size of all hidden layers.	ave	training cycl	es	1000	
	□ Solution and Regression (Solution and Re					
Bayesian Modeling (2) Trace Induction (8)	hidden layer name hidden layer sizes		momentum		0.01	
	Hidden Layer 4		momentum			=
🖻 🔄 Neural Net Training (3)			error epsilor	n	1.0E-5	
- Perceptron						
- 🖗 AutoMLP						
📑 Repositories 🛛 🖓 🖨 🖻						
🚳 🤞 🗕 🧐 🌍 🕷 🖶						
nples (none)						
al Repository (bartvandenelshout)						
data (bartvandenelshout)						
Train (bartvandeneishout - v1, 10/10/14 12:32) Test (bartvandeneishout - v1, 10/10/14 12:33)						
processes (bartvandenelshout)						
	Add Entry Remove Entry Apply Cancel					
		\land 4 hidder	n expert p	parameters		
0						

R.

accuracy: 74.99% +	– 2.15% (mikro: 74.99%)			
	true 0.0	true 1.0	class precision	
pred. 0.0	1981	466	80.96%	
pred. 1.0	466	814	63.59%	
class recall	80.96%	63.59%		
	Input	Hidden 1	Output	
precision: 64.13%	/- 4.77% (mikro: 63.59%) (po	ositive class: 1.0)		
	true 0.0	true 1.0	class precision	
pred. 0.0	1981	466	80.96%	
pred. 1.0	466	814	63.59%	

63.59%

class recall

80.96%

Testing the data

E.

true 0.0 true 1.0 class precision pred. 0.0 2117 564 78.96% class recall 81.24% 58.41% 61.83% Input Hidden 1 Output Output <td <="" colspan="3" th=""><th colspan="7">accuracy: 73.42% + / - 2.18% (mikro: 73.42%)</th></td>	<th colspan="7">accuracy: 73.42% + / - 2.18% (mikro: 73.42%)</th>			accuracy: 73.42% + / - 2.18% (mikro: 73.42%)						
pred. 0.0 2117 564 78.96% pred. 1.0 489 792 61.83% class recall 81.24% 58.41% Input Hidden 1 Output 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		true 0.0	true 1.0	class precision						
preci. 1.0 489 792 61.83% class recall 81.24% 58.41% Input Hidden 1 Output 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	pred. 0.0	2117	564	78.96%						
class recall 81.24% 58.41% Input Hidden 1 Output	pred. 1.0	489	792	61.83%						
Input Hidden 1 Output	class recall	81.24%	58.41%							
precision: 62.92% - /- 5.91% (mikro: 61.83%) (positive class: 1.0)		Input Hidden	1 Output							
	precision: 62.92% - /- 5.91% (mikro: 61.83%) (positive class: 1.0)									

	true 0.0	true 1.0	class precision
pred. 0.0	2117	564	78.96%
pred. 1.0	489	792	61.83%
class recall	81.24%	58.41%	

Pay-off analysis

ERASMUS SCHOOL OF ECONOMICS

Predicted amount of future donators:	1281
Average annual donation*:	7.01€
Estimated costs per mailing**:	0.75€
Projected revenue: $733 \times \in 7.01 =$ Costs: 733 x $\in 0.75 =$ Projected "profit" =	8,979.81 € <u>960.75 €</u> 8,019.06 €

* calculated by averaging the annual donation
** 0.64 € per stamp, + paper and writing costs

