Topics in Business Intelligence Lecture 3: Model validation

Tommi Tervonen

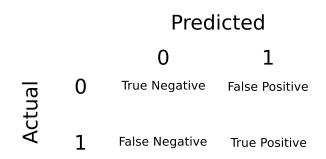
Econometric Institute, Erasmus University Rotterdam

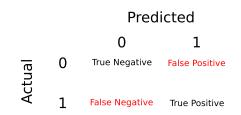
In practice we always have multiple methods to choose from, and even within a single method we often need to choose parameter values

 \rightarrow need for model validation

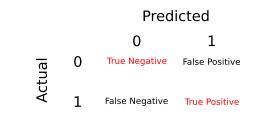
 \rightarrow need for accuracy measures

- Probability of making a misclassification error
- We should perform better than the "Naive classification rule": classify everything to the most prevalent class





- Overall error rate = $\frac{FN+FP}{n}$
- If *n* is reasonably large, the estimation of error rate is good (e.g. misclassification rate 0.05, 99% confidence \rightarrow 3152 cases)



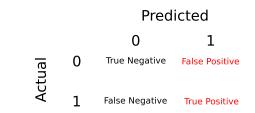
• Overall accuracy =
$$\frac{TN+TP}{n}$$

- Many algorithms use a cutoff for classification probability in deciding the predicted class
- Cutoff value of 0.5 provides the optimal overall accuracy and error rate
- However, sometimes false negatives are more expensive than false positives (or vice versa), and the asymmetric costs should be taken into account (e.g. direct mailing)
- Suppose it is more important to predict membership in class 1 than 0

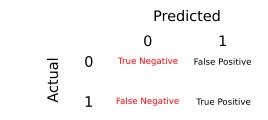
• Sensitivity =
$$\frac{TP}{FN+TP}$$

 Ability of the classifier to detect the important class 1 members correctly



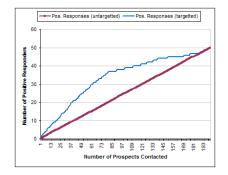


• False positive rate = $\frac{FP}{FP+TP}$



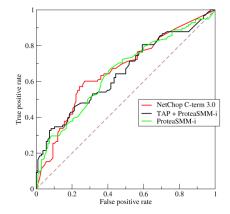
• False negative rate =
$$\frac{FN}{FN+TN}$$

- False negative rate = $\frac{FN}{FN+TN}$
- Accuracy measures can be plotted against cutoff values to find a value that balances the measure



- Lift chart visualize the cumulative lift (or gain) curve
- x-axis: cumulative number of cases in decreasing probability
- y-axis: cumulative number of true positives (the important class 1)
- Example: construction of a lift chart

ROC Curves



True positive rate vs false positive rate

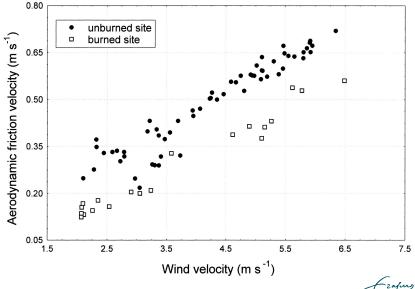
- Suppose our direct mail offer is accepted by 1% of the receivers
- A naive classifier would classify all as nonresponders, and have only 1% error rate (but be useless)
- A classifier that would classify 30% of nonresponders as responders and 2% of responders as nonresponders would probably be better
- $\blacksquare \rightarrow$ asymmetric misclassification costs between classes

	Predict class 1	predict class 0
Actual 1	8	2
Actual 0	20	970

- 2.2% overall error rate
- Now, suppose sending an offer costs 1e, and profit from response is 10e (after sending costs)
 - \blacksquare Send to all \rightarrow loss of 692 euros
 - Naive classifier \rightarrow 0 euros
 - \blacksquare Use classifier above, send to 28 people \rightarrow profit of 60e

- Stratified sampling is used to oversample rare cases
- Similarly, we can oversample (sample multiple times, with or without replacement) to affect the classification errors
- Consequently the costs are indirectly taken into account

Oversampling



ERASMUS UNIVERSITEIT NOTTERDAM

For validating the model with oversampled training, we can:

- Score the model to a validation set that has been selected without oversampling
- 2 Score the model to an oversampled validation set, and reweight the results to remove the effects of oversampling

The first option is always preferred, but not might be feasible due to lack of data

- \blacksquare Assume 2% response rate, oversampling 25x \rightarrow response of 50%
- Assume confusion matrix:

	Actual 1	Actual 0	Total
Predicted 1	420	110	530
Predicted 0	80	390	470
Total	500	500	1000

 Overall misclassification rate = (80 + 110)/1000 = 19%, and model ends up classifying 53% of the records as 1's

To reweight to account to the actual number of 0's and 1's in the validation set, we need to add enough 0's to get the original balance (1 : 50), that is

500 + 0.98x = x

To reweight to account to the actual number of 0's and 1's in the validation set, we need to add enough 0's to get the original balance (1 : 50), that is

500 + 0.98x = x

which yields x = 25000. Now we augment # of actual nonresponders, and get:

	Actual 1	Actual 0	Total
Predicted 1	420	5 390	5 810
Predicted 0	80	19 110	19 190
Total	500	24 500	25000

To reweight to account to the actual number of 0's and 1's in the validation set, we need to add enough 0's to get the original balance (1 : 50), that is

500 + 0.98x = x

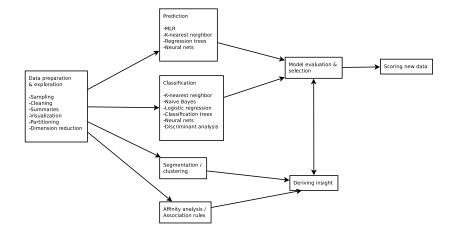
which yields x = 25000. Now we augment # of actual nonresponders, and get:

	Actual 1	Actual 0	Total
Predicted 1	420	5 390	5 810
Predicted 0	80	19 110	19 190
Total	500	24 500	25000

- \rightarrow adjusted misclassification rate (80 + 5390)/25000 = 21.9%
- Model classifies 21.4% of records as 1's.

- Mean absolute error/deviation
- Average error
- Mean absolute percentage error
- Root mean-squared error
- Total sum of squared errors

Data mining process



Group	Topic	Week
Yiwei et al	k-NN and Naive Bayes'	4
Stamenova et al	Classification trees	5
Zaghainov et al	Neural nets	6
Merkle et al	Logistic regression	7

Note! These 4 lectures have mandatory attendance