Advanced Programming

Lecture 3: Programming by contract

Tommi Tervonen

Econometric Institute, Erasmus School of Economics

/6'/“% ,,,,,,,,,,,,,,

public class DataSet {
private Arraylist<double[]> data;

public DataSet(String fname) throws |OException,

FileNotFoundException { ... }
public int getNrColumns() { ... }
public double[] getColumn(int index) { ... }

/6'/“4 ,,,,,,,,,,,,,,

Private / public visibility

m public are visible to everyone
m private visible only within the class: also other objects of

the same class can access them (motivation: if you modify the
variable type, you can also modify the uses)

public class Matrix {
private double[] data;
private int nrows;

public Matrix(Matrix other) {
this.nrows = other.nrows;
copyData(other.data);

}

/6'/“4 ,,,,,,,,,,,,,,

Private methods

m Maximize use of private methods for code clarity and to avoid
redundance

m Every method should fit in one screen of code

public DataSet(String fname) throws |OException {
this.fname = fname;
FileReader fr = new FileReader(fname);
BufferedReader rdr = new BufferedReader(fr);
loadData(rdr);

}

private void loadData(Reader rdr)
throws |OException {

/6'/“4 ,,,,,,,,,,,,,,

Reminder: side-effects

m Java passes primitives by value, objects by reference

m Side effects can occur when mutable objects are passed as
parameters (or: object the method is called on can be
modified)

/6'/“4 ,,,,,,,,,,,,,,

Contract documentation

VAL
Sorts the array in ascending order from
from sindex. |.e. guarantees the post—condition:

*
*
*
x array[slndex] <= ... <= array[array.length—1]
*
*
*
*

Oparam array the array to sort.
Oparam slndex the starting index.
PRECOND: 0 <= slndex < array.length

*/

void sortFromlndex(double[] array, int slndex)

/6'/“4 ,,,,,,,,,,,,,,

Violating pre-conditions

m Crash the program execution by throwing an unchecked
exception (e.g. I1legalArgumentException)

m By convention, null references should never be passed in
Java (or NullPointerException is thrown)

public void sortFromlindex(int[] array, int index) {
if(index < 0 || index >= array.length) {
throw new IllegalArgumentException("outofb”);

}

// ... do the actual sorting

}

/6'/“4 ,,,,,,,,,,,,,,

Assertions in Java

m In addition to unchecked exceptions (e.g.
IllegalArgumentException), java has assert keyword
that checks for a condition

m Assertions are only enabled during development as they can
do computationally expensive checks (similar convention in C,
but not in Matlab!)

m Need to be enabled in Eclipse (run as / run configurations /
arguments / VM arguments: add "-ea")

m Failed assertions throw AssertionException

m Do not use assertions to check pre-conditions of public
methods!

/6“”“4 ,,,,,,,,,,,,,,

How do you know your method
works?

Unit testing

Unit testing refers to automated testing of code functionality
a "unit” at a time (e.g. method)

m We test only public methods (=the interface)
m Not tested = doesn't work

A single unit test tests one functionality, and tests can be
grouped to test suites (usually 1 test suite with all tests)

In Eclipse the JUnit library needs to be added to build path

public void sortFromIndex (int[] array, int index)

/6'/“4 ,,,,,,,,,,,,,,

public class SorterTest {

@Test
public void testSort() {
Sorter s = new Sorter ();

int[] arr = new int[]{3.0, 2.0, 1.0};
s.sortFromlindex(arr, 1);

assertEquals (3.0, arr[0], 0.00001);
assertEquals (1.0, arr[1], 0.00001);
assertTrue(arr[2] = 2.0);

s.sortFromlIndex(arr, 0);

assertArrayEquals(new double[]{1.0, 2.0, 3.0},
arr, 0.00001);

m Example: fi.smaa.jsmaa.model.ScaleCriterion tests

public class StudentTest {
private Student s;

@Before
public void setUp() {
s = new Student("tommi”, 1212);
}
@Test
public void testConstructor() {

assertEquals("tommi” , s.getName());
assertEquals (1212, s.getNumber());

}

QTest
public void testSetGetName() {
assertEquals("tommi”, s.getName());

s.setName("x");

assertEquals("x

}
OTest

public void testSetGetNumber() {

, s.getName());

m Unit tests document functionality

Unit tests provide a safety net ("let me change this ... does it
break something?")

m More tests = more trust in your code
m Bug = lack of a test

m Test-driven development

/6'/“4 ,,,,,,,,,,,,,,

Test-driven development

succeeds

[All tests
succeed

Class invariants

m Classes can have invariants that hold after the constructor
has finished, and before and after each public method call

m Throw IllegalStateException if the class invariant does
not hold (often a sanity check)

public class CircularLinkedList {
// invariant: lisEmpty() —> list is circular

/6'/“4 ,,,,,,,,,,,,,,

public class Date {
private int day; // invariant: 1 <= day <= 31
private int month; // invariant: 1 <= month <= 12

/%%
x Sets the day.
*

x ©Oparam day New day, PRECOND: 1 <= day <= 31
+/
public void setDay(int day) {
if (day < 1 || day > 31) {
throw new IllegalArgumentException (" precond”
+ " violation: day not valid");
}
this.day = day;

}

Re-structure code without altering functionality
Unit tests crucial

Rename field/method, extract class, extract variable, convert
local variable to field, inline variable, change method
signature, move method, move field

Pull up/push down methods in class hierarchy, extract
interface

Superb support in Eclipse

/6'/“4 ,,,,,,,,,,,,,,

Method overloading

m Single method can have different implementations with
different parameters. e.g.

public String() // constructs an empty string
public String(char[] value)
// constructs a string with contents

m The constructor is overloaded (note: constructor name is
fixed, otherwise only 1 way to construct an object)

m Overloading is defined by the method name and parameters
(not including exceptions or the return value!)

/6“”“4 ,,,,,,,,,,,,,,

Final variables

m final keyword declares that the value of the variable cannot
be re-set

final int x = 2;
x = 3; // error

final Student s = new Student(”tommi”);

s.setName("tommi2"); // ok
s = new Student(”"tommi3"); // error

/6'/“4 ,,,,,,,,,,,,,,

Static variables and methods

m In OOP, most method calls are bound to an object

m static allows to create variables and methods that exist
statically, i.e. can be called without an object

public class Math {
public static final double Pl = 3.141592654;

public static double abs(double x) { ... }

/6'/“4 ,,,,,,,,,,,,,,

