
Advanced Programming
Lecture 1: Introduction, elementary concepts in OOP

Tommi Tervonen

Econometric Institute, Erasmus School of Economics

Course learning objectives

Understand core concepts of the object-oriented paradigm
(e.g. inheritance, interfaces, abstract classes, polymorphism,
generics) and be able to program with these in Java

Be able to use unit testing frameworks (such as JUnit) and
develop software in a test-first manner

Course organization

7 lectures

Theory
Provide background for the exercises

4 exercise sessions

4 large exercises done alone or in pairs
Come to exercises to ask questions and get help with your code

Study load

4 ECTS = 112h

7 lectures = 14h

4 exercise sessions = 8h

Exam = 3h

⇒ Independent programming 87h ≈ 22h/w (for 4 weeks)

Course staff

Tommi Tervonen Lectures (& exercises) H11-26
Ruben Janssen Exercises -

Also: you! Participate in course discussion forums in BB to
get and provide help with the exercises

Grading

Exercises: 50% (each 12.5%)

Alone or in pairs
Published in BB, latest after Tuesday’s lecture
Strict deadline on following week’s Sunday @ 23.59
Submission via BB: only the source files in a ZIP. Include a
comment in all files with your names and student numbers
Incorrect submission format = 0 points
Non-compiling code = 0 points
Crashing code = 0 points
Not adhering to good programming practices = max 10 points

Written exam: 50%

Open questions (like in 2nd year programming)

Plagiarism

Do not submit anything you haven’t written yourself

Do not submit anything that is not your idea

Co-operation is allowed

“But I could’ve solved this problem myself, it was just faster
to google the solution”

All suspected plagiarism will be reported to the examination
board

Required knowledge

Inleiding programmeren:

Variables and methods

Program flow

Decisions and branching

Control structures

Bitwise operators

Arithmetic operators

Scoping

Programmeren:

Programming paradigms

Typing

Procedures/functions

Memory organization

Computational complexity

Pre- and post conditions

Side effects

Unit testing (a bit)

Lectures

L1 Introduction, elementary concepts in OOP

Practicalities
Objects and classes
Memory allocation and garbage collection
Packages

L2 Errors, exceptions and streams

Arrays, ArrayList
Error handling
Exception hierarchy
Streams

L3 Programming by contract

Data hiding
Contract documentation
Unit testing
Class invariants
Static variables and methods

Lectures

L4 Interfaces and polymorphism

Interfaces
Casting
Polymorphism
Inner classes

L5 Inheritance

Inheritance hierarchies
Overriding
Subclass construction
Polymorphism and inheritance

L6 Java Collections Framework

Object identity
Generics
Collections, Lists, Sets, Maps
Iterators

L7 Overview

Literature

Lectures = main exam material

Horstmann: Java Concepts (6th ed.), Wiley (or almost any
other decent Java book)

All course material is posted in
http://smaa.fi/tommi/courses/prog3/

If you don’t know how computers work: LN-TT-22012-3
(http://smaa.fi/static/prog2/ln-tt-22012-3.pdf)

http://smaa.fi/tommi/courses/prog3/
http://smaa.fi/static/prog2/ln-tt-22012-3.pdf

Software

JDK v6+

Exercises must compile & run with Sun JDK with JRE
1.6.0 26-b03 (default in Ubuntu with sun-java6-jdk package)

The exercise sessions will be guided with Eclipse
(eclipse.org)

eclipse.org

Q?

“The effective exploitation of his powers of abstraction must be
regarded as one of the most vital activities of a competent

programmer.”

E.W. Dijkstra

Procedural vs OOP

Procedural programming: data structures and methods to
operate on them

Object oriented paradigm: data and related methods are
coupled on the language level

funct ion [r e t] = s u b S t r i n g (s t r , s t a r t I d x , e n d I d x)
r e t = ’ ’ ;
f o r i=s t a r t I d x : (endIdx −1)

r e t = c o n c a t (r e t , s t r [i]) ;
end

end

pub l i c c l a s s MyStr ing {
pr i va te char [] data ;

pub l i c MyStr ing (char [] c o n t e n t s) {
data = c o n t e n t s ;

}
pub l i c MyStr ing s u b S t r i n g (i n t s t a r t , i n t end) {

char [] c a r r = new char [end−s t a r t] ;
f o r (i n t i=s t a r t ; i<end ; i ++) {

c a r r [i−s t a r t] = data [i] ;
}
return new MyStr ing (c a r r) ;

}
pub l i c S t r i n g t o S t r i n g () {

return new S t r i n g (data) ;
}

}

Forget everything you know about
programming

Objects and classes

Classes are blueprints for generating classes, the “design”

Objects are instantiations of the classes

Emphasis in OOP is on class design

In program execution, objects communicate with each other
through method calls

In Java: 1 source file = 1 class

Class contents

Attributes for data contents (variant between objects of the
same class)

Methods for behaviour (e.g. attribute access and
manipulation)

Java code convention: classes begin with an uppercase letter,
methods and variables with lowercase ones. Multiple words =
camelCasing.

Class declaration: instance variables (attributes)

pub l i c c l a s s Car {

// maximum speed i n km/h
pr i va te i n t maxSpeed ;

// c u r r e n t f u e l i n p e r c e n t a g e s
pr i va te double f u e l ;

. . .
}

Methods

Methods are separated to accessor- (functions) and mutator
(procedures) methods

Accessor methods return a value but do not the change state
of the object
Mutator methods change the state of the object, but do not
return a value

Not enforced on language level!

Example: accessor- and mutator methods

pub l i c c l a s s Car {
. . .
pub l i c void d r i v e (double p e r c) {

f u e l −= p e r c ;
}
pub l i c void r e f u e l () {

t h i s . f u e l = 1 0 0 . 0 ;
}
pub l i c double g e t F u e l () {

return f u e l ;
}
pub l i c void s e t S p e e d (i n t newSpeed) {

maxSpeed = newSpeed ;
}
pub l i c i n t getSpeed () {

return maxSpeed ;
}

}

Constructor

Classes have a special method with a name of the class, that
is called when a new instance is generated

pub l i c c l a s s Car {

/∗∗
∗ Con s t r u c t s a new ca r w i th g i v en max speed and
∗ a f u l l tank o f f u e l .
∗
∗ @param maxSpeed maximum speed i n km/h
∗/

pub l i c Car (i n t maxSpeed) {
t h i s . maxSpeed = maxSpeed ;
f u e l = 1 0 0 . 0 ;

}

. . .
}

Car mySeat = new Car (1 8 9) ;

// I ’m d r i v i n g to u n i v e r s i t y , t ake away f u e l
mySeat . d r i v e (1 . 0) ;
// Tank
mySeat . r e f u e l () ;

System . out . p r i n t l n (”My s e a t has c u r r e n t l y ”
+ mySeat . g e t F u e l () + ”% f u e l ”) ;

pub l i c c l a s s Car {
// maximum speed i n km/h
pr i va te i n t maxSpeed ;
// c u r r e n t f u e l i n p e r c e n t a g e s
pr i va te double f u e l ;
/∗∗
∗ Con s t r u c t s a new ca r w i th g i v en max speed and
∗ a f u l l tank o f f u e l .
∗
∗ @param maxSpeed maximum speed i n km/h
∗/

pub l i c Car (i n t maxSpeed) {
t h i s . maxSpeed = maxSpeed ;
f u e l = 1 0 0 . 0 ;

}
pub l i c void r e f u e l () {

t h i s . f u e l = 1 0 0 . 0 ;
}
. . .

}

Code documentation

Code is not complete without documentation

Javadoc is a standard way that can be used to automatically
generate documentation in e.g. html

What you should document:

methods (always)
instance variables (if unclear)
classes (always, to include @author)
in-line comments (if unclear)

Method signature describes how to call it, not what it does

pub l i c i n t getSpeed () { . . . }

Class documentation

/∗∗
∗ Models a s i n g l e ca r w i th top speed and f u e l .
∗
∗ @author Tommi Tervonen <t e r vonen@ese . eu r . n l>
∗/
pub l i c c l a s s Car {

. . .
}

Method documentation

/∗∗
∗ Se t s the top speed .
∗
∗ @param newSpeed new top speed i n km/h
∗/
pub l i c void s e t S p e e d (i n t newSpeed) {

maxSpeed = newSpeed ;
}

/∗∗
∗ Give s the top speed .
∗
∗ @re tu rn top speed i n km/h
∗/
pub l i c i n t getSpeed () {

return maxSpeed ;
}

Object references

Computer memory is linear (c.f. LN-TT-22012-3)

Primitive type variables (int, double, char) are references to
contents: always copied when reassigned

Object type variables are references to the actual objects:
when copied, only the reference is reassigned

On immutability

String is a standard class in java although it has non-standard
implicit constructor “contents”

Strings are immutable: once constructed, their contents
cannot change

Our Car was mutable (setSpeed, drive)

Memory allocation and garbage collection

S t r i n g name1 = new S t r i n g (”tommi”) ;
S t r i n g name2 = new S t r i n g (” a l e x ”) ;
name2 = name1 ;
// now : name2 −> ”tommi” <− name1
name1 = nu l l ;

Packages in Java

Multiple classes can have same name, as long as they are in
different packages

Same package classes are automatically in the same
namespace

Others you need to import or refer to them explicitly
(java.util.ArrayList)

Some standard library packages:

java.lang (core classes, always in the namespace)
java.util

java.io

java.math

Convention: name package according to domain in inverse
order (fi.smaa.jsmaa)

Now

Download, install Eclipse

Start thinking about exercise #1
(posted online later on today)

Questions? Use the BB forums

