
Voortgezet Programmeren
Lecture 3: Programming by contract++

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

Counting sum of the elements of an integer array

pub l i c i n t countSum (i n t [] a r r a y) {
f o r (i n t i =1; i<a r r a y . l e n g t h ; i ++) {

a r r a y [i] = a r r a y [i] + a r r a y [i −1] ;
}
return a r r a y [a r r a y . l e n g t h −1] ;

}

Returns the correct value, but also modifies the parameter
array as a side effect.

What would you expect from:

pub l i c i n t countSum (i n t [] a r r a y)

Counting sum of the elements of an integer array

pub l i c i n t countSum (i n t [] a r r a y) {
f o r (i n t i =1; i<a r r a y . l e n g t h ; i ++) {

a r r a y [i] = a r r a y [i] + a r r a y [i −1] ;
}
return a r r a y [a r r a y . l e n g t h −1] ;

}

Returns the correct value, but also modifies the parameter
array as a side effect.

What would you expect from:

pub l i c i n t countSum (i n t [] a r r a y)

Side effects

Unexpected side effects make code difficult to understand

There are also desired side effects, e.g. sorting the contents of
an array

In Java we have

Accessor methods: returning a value but not modifying
contents of the object (public int getAge())
Mutator methods: modifying the contents of the object but
not returning a value (public void setAge(int age))

Functions and procedures

In imperative programming, we similarly classify methods into

Functions, that return a value but do not alter the parameters
in any way
Procedures, that alter some of the parameters but do not
return a value

void s e t E l e m e n t (M a t r i x m, i n t r I n d , i n t cInd ,
double newElement)

double getE lement (M a t r i x m, i n t r I n d , i n t c I n d)

Note: if the language does not support exceptions (e.g. C),
procedures often do return a value for signifying error
conditions

Parameter passing schemes

For side effects to be possible, parameters have to be passed
by reference: only a reference (memory address) of the
variable is passed to the called method

Other main technique for parameter passing is to pass by
value: a local copy of the variable is created within the called
method

Matlab passes everything by value, although Matrices are
passed by references until they are modified the first time, at
which point a local copy is created (!)

Java passes primitives by value, objects by reference

Example: passing schemes Matlab vs Java

Programming by contract

When you design methods, there is a contract between the
supplier (you) and the consumer (possibly someone else)

The contract is partially defined by the signature:

void s o r t A r r a y F r o m I n d e x (i n t [] a r r a y , i n t i n d e x)

Contract:

1 The index has to be in the range [0, array.length-1]

(responsibility of the consumer)

2 If consumer calls the method adhering to (1), then after the
method call the following holds:
array[index] <= array[index+1] <= ... <=

array[array.length-1] (responsibility of the supplier)

Programming by contract

When you design methods, there is a contract between the
supplier (you) and the consumer (possibly someone else)

The contract is partially defined by the signature:

void s o r t A r r a y F r o m I n d e x (i n t [] a r r a y , i n t i n d e x)

Contract:

1 The index has to be in the range [0, array.length-1]

(responsibility of the consumer)

2 If consumer calls the method adhering to (1), then after the
method call the following holds:
array[index] <= array[index+1] <= ... <=

array[array.length-1] (responsibility of the supplier)

Pre- and post-conditions

/∗∗
∗ S o r t s th e a r r a y i n a s c e n d i n g o r d e r s t a r t i n g
∗ from i n d e x . I . e . g u a r a n t e e s t he post−c o n d i t i o n :
∗ a r r a y [i n d e x] <= . . . <= a r r a y [a r r a y . l e n g t h −1]
∗
∗ @param a r r a y t he a r r a y to s o r t .
∗ @param i n d e x t he s t a r t i n g i n d e x .
∗ PRECOND: 0 <= i n d e x < a r r a y . l e n g t h−1
∗/

void s o r t A r r a y F r o m I n d e x (a r r a y , i n d e x)

Responsibilities of the consumer are method pre-conditions
(“Requires”)

Responsibilities of the supplier are method post-conditions
(“Ensures”)

(PRECOND, METHOD) ⇒ POSTCOND

Violating pre-conditions

As a supplier, if the pre-condition is violated, you are not
responsible for what happens

In practice you should crash the program execution by
throwing an unchecked exception (e.g.
IllegalArgumentException), as the mistake is in the logic

By convention, null references should never be passed in
Java (or NullPointerException is thrown)

Never try to catch these exceptions

pub l i c void s o r t F r o m I n d e x (i n t [] a r r a y , i n t i n d e x) {
i f (i n d e x < 0 | | i n d e x >= a r r a y . l e n g t h) {

throw new I l l e g a l A r g u m e n t E x c e p t i o n (” o u t o f b ”) ;
}
// . . . do th e a c t u a l s o r t i n g

}

Assertions in Java

In addition to unchecked exceptions (e.g.
IllegalArgumentException), java has assert keyword
that checks for a condition

Assertions are only enabled during development as they can
do computationally expensive checks (similar convention in C,
but not in Matlab!)

Need to be enabled in Eclipse (run as / run configurations /
arguments / VM arguments: add ”-ea”)

Failed assertions throw AssertionException that you should
never catch

Do not use assertions to check pre-conditions of public
methods!

When to use pre- and post-conditions

If you cannot handle a possible parameter value, you should
declare the accepted range as a pre-condition (and check /
throw IllegalArgumentException)

Post-conditions are often stated in a more informal manner in
the method documentation

Document post-conditions formally when making complex
mathematical programs, and when you have problems finding
bugs

Class invariants

Classes can have invariants that hold after the constructor
has finished, and before and after each method call (often
stated informally)

Throw IllegalStateException if the class invariant does
not hold (usually a sanity check)

Use class invariants rather than pre-conditions to have to call
methods in a certain order

DataSet s = new DataSet (” food . dat ”) ;
double [] x = s . getColumn (0) ;
// ˆ I l l e g a l S t a t e E x c e p t i o n : data not l o a d e d
s . loadData () ;

Method overloading

Single method can have different implementations with
different parameters. e.g.

pub l i c S t r i n g () // c o n s t r u c t s an empty s t r i n g
pub l i c S t r i n g (char [] v a l u e)

// c o n s t r u c t s a s t r i n g w i t h c o n t e n t s

The constructor is overloaded. For constructors this is crucial
as their name is fixed (otherwise we could have only 1 way to
construct an object)

Overloading is defined by method name and parameters (not
by exceptions or return value!)

Data hiding

pub l i c c l a s s DataSet {

pr i va te A r r a y L i s t <double []> data ;

pub l i c DataSet (S t r i n g fname) throws IOExcept ion ,
F i l e N o t F o u n d E x c e p t i o n { . . . }

pub l i c i n t getNrColumns () { . . . }

pub l i c double [] getColumn (i n t i n d e x) { . . . }

}

Private / public visibility

public are visible to everyone

private are visible only within the class: also other objects
of the same class can access them (motivation: if you modify
the variable type, you can also modify use of the uses)

pub l i c c l a s s M a t r i x {
pr i va te double [] data ;
pr i va te i n t nrows ;

pub l i c M a t r i x (M a t r i x o t h e r) {
t h i s . nrows = o t h e r . nrows ;
copyData (o t h e r . data) ;

}
. . .

}

Private methods

Maximize the use of private methods for code clarity and to
avoid redundance (also, in Eclipse: refactor/extract method)

Rule of thumb: every method should fit in one screen of code

pub l i c DataSet (S t r i n g fname) throws I O E x c e p t i o n {
t h i s . fname = fname ;
F i l e R e a d e r f r = new F i l e R e a d e r (fname) ;
B u f f e r e d R e a d e r r d r = new B u f f e r e d R e a d e r (f r) ;
loadData (fname) ;

}

pr i va te void l oadData (Reader r d r)
throws I O E x c e p t i o n {

. . .
}

Final variables

final keyword declares that the value of the variable cannot
be re-set

f i n a l i n t x = 2 ;
x = 3 ; // e r r o r

f i n a l Student s = new Student (”tommi”) ;
s . setName (”tommi2”) ; // ok
s = new Student (”tommi3”) ; // e r r o r

Static variables and methods

In OOP, most methods are bound to an object they operate
on (and cannot be called without the object being constructed
first)

static allows to create variables and methods that exist
statically, i.e. can be called without the object

pub l i c c l a s s Math {
. . .
pub l i c s t a t i c f i n a l double PI = 3 . 1 4 1 5 9 2 6 5 4 ;
. . .
pub l i c s t a t i c double abs (double x) { . . . }
. . .

}

