Voortgezet Programmeren

Lecture 3: Programming by contract++

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

/6'/“% ,,,,,,,,,,,,,,

Counting sum of the elements of an integer array

public int countSum(int[] array) {
for (int i=1;i<array.length;i++) {
array[i] = array[i] + array[i—1];
}

return array[array.length —1];

}

/6'/“% ,,,,,,,,,,,,,,

Counting sum of the elements of an integer array

public int countSum(int[] array) {
for (int i=1;i<array.length;i++) {
array[i] = array[i] + array[i—1];
}

return array[array.length —1];

}

m Returns the correct value, but also modifies the parameter
array as a side effect.

m What would you expect from:

public int countSum(int[] array)

/6'/“4 ,,,,,,,,,,,,,,

Side effects

m Unexpected side effects make code difficult to understand

m There are also desired side effects, e.g. sorting the contents of
an array

m In Java we have

m Accessor methods: returning a value but not modifying
contents of the object (public int getAge())

m Mutator methods: modifying the contents of the object but
not returning a value (public void setAge(int age))

/6'/“4 ,,,,,,,,,,,,,,

Functions and procedures

m In imperative programming, we similarly classify methods into

m Functions, that return a value but do not alter the parameters
in any way

m Procedures, that alter some of the parameters but do not
return a value

void setElement(Matrix m, int rind, int clInd,
double newElement)

double getElement(Matrix m, int rind, int cind)

m Note: if the language does not support exceptions (e.g. C),
procedures often do return a value for signifying error
conditions

/6“”“4 ,,,,,,,,,,,,,,

Parameter passing schemes

m For side effects to be possible, parameters have to be passed
by reference: only a reference (memory address) of the
variable is passed to the called method

m Other main technique for parameter passing is to pass by
value: a local copy of the variable is created within the called
method

m Matlab passes everything by value, although Matrices are
passed by references until they are modified the first time, at
which point a local copy is created (!)

m Java passes primitives by value, objects by reference

m Example: passing schemes Matlab vs Java

/6“”“4 ,,,,,,,,,,,,,,

Programming by contract

m When you design methods, there is a contract between the
supplier (you) and the consumer (possibly someone else)

m The contract is partially defined by the signature:

void sortArrayFromlindex(int[] array, int index)

/6'/“4 ,,,,,,,,,,,,,,

Programming by contract

m When you design methods, there is a contract between the
supplier (you) and the consumer (possibly someone else)

m The contract is partially defined by the signature:

void sortArrayFromlindex(int[] array, int index)

Contract:
The index has to be in the range [0, array.length-1]
(responsibility of the consumer)

If consumer calls the method adhering to (1), then after the
method call the following holds:
array[index] <= arrayl[index+l] <= ... <=
array[array.length-1] (responsibility of the supplier)

/6“”“4 ,,,,,,,,,,,,,,

Pre- and post-conditions

/xox

x Sorts the array in ascending order starting

x from index. |.e. guarantees the post—condition :
x array[index] <= ... <= array[array.length—1]

*

x Oparam array the array to sort.

x Oparam index the starting index.

* PRECOND: 0 <= index < array.length—1

*/

void sortArrayFromlIndex(array, index)

m Responsibilities of the consumer are method pre-conditions
(“Requires”)

m Responsibilities of the supplier are method post-conditions
(“Ensures”)

m (PRECOND, METHOD) = POSTCOND /6%”

Violating pre-conditions

m As a supplier, if the pre-condition is violated, you are not
responsible for what happens

m In practice you should crash the program execution by
throwing an unchecked exception (e.g.
IllegalArgumentException), as the mistake is in the logic

m By convention, null references should never be passed in
Java (or NullPointerException is thrown)

m Never try to catch these exceptions

public void sortFromlndex(int[] array, int index) {
if(index < 0 || index >= array.length) {
throw new lIllegalArgumentException (" outofb”);
}

// ... do the actual sorting

J /6“”“4 ,,,,,,,,,,,,,,

Assertions in Java

m In addition to unchecked exceptions (e.g.
IllegalArgumentException), java has assert keyword
that checks for a condition

m Assertions are only enabled during development as they can
do computationally expensive checks (similar convention in C,
but not in Matlab!)

m Need to be enabled in Eclipse (run as / run configurations /
arguments / VM arguments: add "-ea")

m Failed assertions throw AssertionException that you should
never catch

m Do not use assertions to check pre-conditions of public
methods!

/6“”“4 ,,,,,,,,,,,,,,

When to use pre- and post-conditions

m If you cannot handle a possible parameter value, you should
declare the accepted range as a pre-condition (and check /
throw I1legalArgumentException)

m Post-conditions are often stated in a more informal manner in
the method documentation

m Document post-conditions formally when making complex
mathematical programs, and when you have problems finding
bugs

/6'/“4 ,,,,,,,,,,,,,,

Class invariants

m Classes can have invariants that hold after the constructor
has finished, and before and after each method call (often
stated informally)

m Throw IllegalStateException if the class invariant does
not hold (usually a sanity check)

m Use class invariants rather than pre-conditions to have to call
methods in a certain order

DataSet s = new DataSet("food.dat");
double[] x = s.getColumn(0);

// " lllegalStateException: data not loaded
s.loadData ();

/6“”“4 ,,,,,,,,,,,,,,

Method overloading

m Single method can have different implementations with
different parameters. e.g.

public String() // constructs an empty string
public String(char[] value)
// constructs a string with contents

m The constructor is overloaded. For constructors this is crucial
as their name is fixed (otherwise we could have only 1 way to
construct an object)

m Overloading is defined by method name and parameters (not
by exceptions or return value!)

/6“”“4 ,,,,,,,,,,,,,,

public class DataSet {
private Arraylist<double[]> data;

public DataSet(String fname) throws |OException,

FileNotFoundException { ... }
public int getNrColumns() { ... }
public double[] getColumn(int index) { ... }

/6'/“4 ,,,,,,,,,,,,,,

Private / public visibility

m public are visible to everyone
m private are visible only within the class: also other objects

of the same class can access them (motivation: if you modify
the variable type, you can also modify use of the uses)

public class Matrix {
private double[] data;
private int nrows;

public Matrix(Matrix other) {
this .nrows = other.nrows;
copyData(other.data);

}

/6'/“4 ,,,,,,,,,,,,,,

Private methods

m Maximize the use of private methods for code clarity and to
avoid redundance (also, in Eclipse: refactor/extract method)

m Rule of thumb: every method should fit in one screen of code

public DataSet(String fname) throws |OException {
this.fname = fname;
FileReader fr = new FileReader(fname);
BufferedReader rdr = new BufferedReader(fr);
loadData (fname);

}

private void loadData(Reader rdr)
throws |OException {

/6“”“4 ,,,,,,,,,,,,,,

Final variables

m final keyword declares that the value of the variable cannot
be re-set

final int x = 2;
x = 3; // error

final Student s = new Student(”tommi”);

s.setName("tommi2"); // ok
s = new Student(”"tommi3"); // error

/6'/“4 ,,,,,,,,,,,,,,

Static variables and methods

m In OOP, most methods are bound to an object they operate
on (and cannot be called without the object being constructed

first)
m static allows to create variables and methods that exist
statically, i.e. can be called without the object

public class Math {

public static final double Pl = 3.141592654;

public static double abs(double x) { ... }

/6'/“4 ,,,,,,,,,,,,,,

