
Voortgezet Programmeren
Lecture 0: Introduction

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

Course learning objectives

After this course, you should be able to

understand the main concepts in object-oriented programming

design and implement programs in Java

This course is designed for ones who completed Programmeren
(FEB22012) before this year

Why Java?

Open (+-)

Free

Fast

Portable

Object-oriented

Gets you a job

Course organization

6 lectures

Theoretical contents
Provide background for the exercises

6 exercise sessions

6 large exercises done in pairs
Come to exercises to ask questions and get help with your code

6 exercise lectures (first one = this introduction)

Office hours for the teaching assistants (+me) to be around to
give detailed answers to grading
Example answers to the exercises will be posted online, but
there is always more than 1 correct answer

Study load

4 ECTS = 112h

6 lectures = 12h

6 exercise sessions = 12h

6 exercise lectures = 6h

Exam = 4h

⇒ Independent programming 78h = 13h/w

Grading

Exercises: 50% (each 8.3̄%)

Done in pairs
Exercises will be published in BB after Monday’s lecture
Strict deadline on Sundays @ 23.59
Submission via BB: only the source files in a ZIP. Include a
comment in all files with your names and student numbers
Incorrect submission format = 0 points
Non-compiling code = 0 points
Crashing code = 0 points
Not adhering to good programming practices = max 6 points

Written exam: 50%

Essay questions

Making the exercises

Don’t underestimate the
importance of theory

i f (s t u c k ()) {
askHe lp () | | f a i l () ;

}

Plagiarism

Do not submit anything you haven’t written yourself

Do not submit anything that is not your idea

The teaching assistants will not give you answers in the
tutorials: they will merely help you find the answer

“But I could’ve solved this problem myself, it was just faster
to google the solution”

All suspected plagiarism will be reported to the examination
board

Course staff

Tommi Tervonen Lectures & exercises H10-23 -
Alexander Hogenboom Exercises H10-21 ETC1+3
Frederik Hogenboom Exercises H10-21 ETC2+6
Charlie Ye Exercises H10-13 ETC4+5

Also: you! Participate in course discussion forums in BB to
get and provide help with the exercises

TAs grade exercises and give feedback during “question time”

Required knowledge

Inleiding programmeren:

Variables and methods

Program flow

Decisions and branching

Control structures

Bitwise operators

Arithmetic operators

Scoping

Lectures

L0 Introduction
Practicalities
Programming paradigms
Compiled languages
Introduction to types

L1 Elementary concepts in OOP
Objects and Classes
Variables and Methods
Memory allocation and garbage collection

L2 Programming with Java
Decisions, iteration
Arrays
Errors and Exceptions

L3 Programming by contract
Data hiding
Side effects
Pre- and post-conditions
Static variables and methods
Unit testing

Lectures

L4 Interfaces and polymorphism

Interfaces
Casting
Polymorphism
Inner classes

L5 Inheritance

Inheritance hierarchies
Overriding
Subclass construction
Polymorphism and inheritance

L6 Java Collections Framework

Collections
Lists
Sets
Maps

Literature

Lectures = main exam material

Horstmann: Java Concepts (6th ed.), Wiley

All course material is posted in
http://smaa.fi/tommi/courses/prog3/

If you don’t know how computers work: LN-TT-22012-1
(http:
//smaa.fi/tommi/courses/prog2/ln-tt-22012-1.pdf)

http://smaa.fi/tommi/courses/prog3/
http://smaa.fi/tommi/courses/prog2/ln-tt-22012-1.pdf
http://smaa.fi/tommi/courses/prog2/ln-tt-22012-1.pdf

Software

JDK v6+

Exercises must compile & run with Sun JDK with JRE
1.6.0 26-b03 (default in Ubuntu with sun-java6-jdk package)

The exercise sessions will be guided with Eclipse
(eclipse.org)

eclipse.org

Q?

“The effective exploitation of his powers of abstraction must be
regarded as one of the most vital activities of a competent

programmer.”

E.W. Dijkstra

Programming paradigms

Programming paradigms refer to the philosophy behind
designing programming languages

When you know to program with 1 language of a paradigm,
others of the same paradigm are easy to learn (mostly just
syntax)

Programming paradigms

1 Procedural / imperative paradigm (C, Pascal, Matlab, R,
Fortran, Algol, Python)

2 Object-oriented paradigm (Java, Smalltalk, C++ partially)

3 Declarative paradigm, including

Functional programming (ML, Lisp, Haskell, Erlang, Scala,
Scheme)
Logic programming (Prolog)

OO vs Procedural

Object-oriented Procedural

Design classes that communicate Design global methods
Abstract Data Types Data structures

Suitable for large programs For “small” programs
Access control in language Programmer has full access

Both are part of imperative paradigm: control flow consists of
statements that change the state of the program

x = 2;

Imperative paradigm makes program correctness hard to
prove, as x = 2 6= x ← 2

Compilation of languages

Before source code can be executed, it needs to be compiled
into an executable format

The compilation can be made

1 Completely in advance to a binary executable (fast)
2 Partially in advance to bytecode to be executed in a virtual

machine (Java, quite fast and portable)
3 Run-time (slow but allows easy “modify & execute” cycles)

Runtime compiled languages (e.g. Matlab)

Fully compiled languages (e.g. C)

Bytecode compiled languages (e.g. Java)

Introduction to types

Typing systems form the core of programming languages -
they allow construction of abstractions

Differences in electric currency → bits → numbers →
characters → objects

Strong and weak typing

Weak typing : a single variable can be assigned varying types of
values

y = 3 ; % ok − no type d e c l a r a t i o n r e q u i r e d
y = ’ t ’ ; % ok

Strong typing: each variable has a type associated with it

i n t x = 2 ; // ok
x = 3 ; // ok
x = ‘ ‘ s ’ ’ ; // c omp i l a t i o n e r r o r

Typing in Matlab

Matlab is a weakly typed language, and the following are valid
expressions:

x = 1 ;
y = ’ 1 ’ ;
z = x + y ;

Now z = ?

Typing in Java

Primitive and object types

Variables must be declared (int age;)

Non-trivial conversions must be type cast (example)

Until next week

1 Read http://docs.oracle.com/javase/tutorial/

getStarted/intro/index.html

2 Download and install JDK

3 Download, install, and familiarize yourself with Eclipse

4 Make sure you can compile and execute code in terminal
(=command prompt in m$ terminology)

5 Make independently exercise 0 (not graded)

http://docs.oracle.com/javase/tutorial/getStarted/intro/index.html
http://docs.oracle.com/javase/tutorial/getStarted/intro/index.html

