
Voortgezet Programmeren (FEB23007-11)

4. Exercise

Deadline for submission: 2012-02-05 23:59 CET

Instructions

Include in each source �le (in class documentation, @author) your names and student numbers. Submit the
exercise as a zip �le containing _only_ the source �les in root of the zip. Submit via blackboard. Note
that incorrectly submitted or non-compiling exercises are automatically awarded 0 points. Remember to
document your code with Javadoc-annotations.

Exercise

The bisection algorithm (see http://en.wikipedia.org/wiki/Bisection_method for description and pseudo-
code) is a well-known algorithm in mathematics used to �nd the root of a function in a particular interval.
In this exercise, we want to implement this algorithm in Java and apply it on linear and quadratic functions.
A linear function is described as

f(x) = ax+ b,

where a and b are commonly known as the slope and intersect respectively, whereas a quadratic function
can be described as

f(x) = ax2 + bx+ c.

We will make use of an interface, since the functions have similar functionalities. For making the program
in an object-oriented manner, you should implement (at least) the following standard/unit testing classes:

• Function: an interface class containing the general function evaluation method with signature double
evaluate(double at).

• LinearFunction: a class representing a linear function. The class should have a constructor that takes
the slope and intercept as input, be immutable, and implement Function.

• LinearFunctionTest: a class for unit testing LinearFunction public methods.

• QuadraticFunction: a class representing a quadratic function. The class should have a constructor
that takes the coe�cients a, b, and c as inputs, be immutable, and implement Function.

• QuadraticFunctionTest: a class for unit testing QuadraticFunction public methods.

• BiSectionMethod: a class that contains the bisection method. The class should contain a static
bisection method that takes as input a Function and the interval for evaluation. It should return the
value at which the function evalutes as 0. Make sure to document and check for the pre-condition for a
valid interval, as the root of f(·) can only be found in an interval [x1, x2] where f(x1) and f(x2) have
di�erent signs. Make the bisection method parameters TOL and NMAX as public constants within
the class (public static final).

• BiSectionMethodTest: a class for unit testing BiSectionMethod public methods.

• Main: a tester class that constructs functions f(x) = 2x + 3, g(x) = 7x2 − 3x − 10 and applies the
bisection algorithm on them at di�erent intervals.

1


