
LN-TT-22012-3

Tommi Tervonen

Econometric Institute

Erasmus University Rotterdam

August 2013

“Computer programming is an art, because it applies accumulated knowledge
to the world, because it requires skill and ingenuity, and especially because it
produces objects of beauty. A programmer who subconsciously views himself
as an artist will enjoy what he does and will do it better. “ (D.E. Knuth)

1 Introduction

I have made these lecture notes to help you better understand theoretical contents of the
course FEB22012, “Programming”. The course is divided in two parts: the lectures in
which we discuss topics in imperative programming, and the practical sessions in which
you can get help from the teaching assistants and me for completing the home assignments.
Although the course contains quite some contact teaching hours, the largest part of the
course workload is individual study - you should try to do the exercises at home (except
for the first ones) _before_ coming to the exercise session. Programming is a too complex
discipline to be learned in a few hours in class rooms, and requires countless hours of lone
suffering followed by brief moments of enlightenment.

This course is called “Programming”, and we will indeed cover multiple topics within the
scope of imperative programming paradigm that is discussed in Section 1.2. The main
learning objective of the course is to understand how to develop correct and efficient
programs irrespective of the implementation language. The exercises will be made in
Matlab, but after this course you should be able to program also in other weakly typed
languages such as R or Python.

1.1 Recall of Introduction to Programming course contents

A prerequisite for succesfully completing this course is understanding the material dis-
cussed in FEB21011, “Introduction to Programming”. If you have hard time completing
the assigments of this course, I recommend trying to re-read the material of FEB21011.
You do not need to remember the short introduction to object oriented programming, but
rest of the FEB21011 course contents are required pre-knowledge for this course. More
specifically, you should be familiar with the following topics:

• Variables and methods

• Program flow

1

• Control structures

• Decisions and branching

• Binary operators

• Arithmetic operators

• Scoping

1.2 Programming paradigms

Programming paradigms refer to the philosophy behind designing a certain programming
language. When you learn to program according to a certain paradigm, learning new
languages of the same paradigm is easy - you only have to learn the syntax, as the manner
in which problems are solved is generally the same within a single paradigm. There are
three main programming paradigms (exemplary languages in parentheses):

1. Procedural / imperative paradigm (C, Pascal, Matlab, R, Fortran, Algol)

2. Object-oriented paradigm (Java, Smalltalk, C++ partially)

3. Declarative paradigm, including

(a) Functional programming (ML, Lisp, Haskell, Erlang, Scala, Scheme)

(b) Logic programming (Prolog)

Java which you learned in the first course falls under the object-oriented paradigm (OOP).
In OOP, the main idea is to construct classes that are instantiated to objects that can
communicate (i.e. send signals, call methods) with each other. The emphasis in OOP is on
creating new classes implementing behaviour required for solving the problem. One of the
main advantages of OOP is that the classes can have their implementation details hidden
(as private or protected). This allows to control the immense complexities inherent
in programming through data hiding, which is an invaluable mechanism especially when
more than one programmer are working on the same problem. For example, consider the
following class:

public class Car {
private char [] regNr ;
public Car (S t r ing regNr) {

this . regNr = regNr . toCharArray () ;
}
public Str ing getRegNr () {

return new Str ing (regNr) ;
}

}

The designer of this class has decided to store the registration number as a character array,
but users (other programmers) of the class see the registration number as a String. If
another way of storing registration numbers internally becomes necessary (e.g. within a

2

data base), the use of the class (calling its methods) does not have to be changed and the
code still keeps on working as it is.

Although is it mostly OOP, Java also includes non-object-oriented parts in the language
as, for example, primitive types are not objects. These are included on one hand for
the code to execute faster, and on the other hand due to historical reasons. Java is
partially based on C and its object oriented extension C++, making it also adhering
to the procedural paradigm. Procedural programming is the oldest still widely used way
of creating programs, and it is also called the imperative paradigm, although imperative
is used often as a wider term including both procedural- and object oriented ones. In
procedural programming the two main ideas are (1) to create statements that change the
program state, such as

int x = 3 ; // assignment
while (x < 5) { . . . } // i t e r a t i o n

and (2) to create methods that group statements in a way that minimize the scope in which
the state changes apply. The imperative paradigm consists solely of (1), whereas in the
object-oriented paradigm (2) is replaced by focusing on objects that include encapsulation
of data.

The problem with the imperative programming is that the correctness of programs is
in many cases extremely difficult to assess. We will come back to this in Section 4.
Declarative programming languages make it feasible to prove the program correctness.
Functional languages are, in addition to being practically provably correct, also easily
parallelizable, which has lead to their increased use in the past few years due to increased
availability and importance of multi-core and distributed systems. Declarative languages
are, however, out of the scope of this course.

1.3 Scripting languages

In addition to distinguishing between paradigms, programming languages can be classified
into compiled and interpreted languages. With compiled languages the source files are
compiled into binary code which can then be directly executed. With interpreted languages
there is no compilation performed, but the source code itself is executed in a special
environment. There is a trade-off between these two approaches: on one hand, compiled
code is usually considerably faster and does not require extra software to run, making
program distribution easier. On the other hand, interpreted code does not have to be
compiled which makes the development faster, and it can even be input into an interactive
environment one line at a time.

Java falls somewhere in between the two approaches. Its source code is compiled into byte
code (not machine code) that then needs to be executed in a virtual machine. In this way
Java achieves the speed (±95% of equivalent fully compiled code) of compiled languages
and independence of the compilation platform as there are separate machine code virtual
machines for each platform.

Scripting languages are often used for less complicated programming tasks, or for those
that are small enough to be implemented in a few screens of code. Matlab is a scripting
language aimed mainly at scientific computing – as such, it is reasonably well suited for
programming econometrical models and for running small-scale scientific experiments. A

3

rule of thumb for using a “real” programming language such as Java instead of Matlab is
that scripting languages should not be used for making programs that will ever be used
by more than few other people.

1.4 Introduction to types

Typing systems form the core of programming languages. In the actual hardware, comput-
ers process only sequences of bits. For example, a number type int is a chosen quantity
(e.g. 32) of bits that has a meaning to represent a number in a certain form of binary
encoding. Further abstraction provides more complex types. For example, Java’s String

represents character strings in UTF-8 encoding. The whole idea of programming in higher
level languages (such as C, Java, or Matlab) is to construct abstractions and methods that
compute with those. This enables a programmer to manage the underlying complexity in
a layered manner.

Java is a strongly typed language. This means that every variable has a type that has to
be introduced when the variable is declared. For example, the following is a valid variable
declaration in Java:

int nrVar ;

Now the nrVar can only be used to store integers. The typing system enables the compiler
to detect errors in the following kinds of assignment statements:

nrVar = "my name" ; // error − "my name" i s o f type S t r ing
nrVar = ’ c ’ ; // error − ’ c ’ i s o f type char

Strong typing increases program safety by detecting some programming errors already at
the compilation phase. Strongly typed languages are suited for all kind of programs, and
practically all software you are using on your computer is programmed with a strongly
typed language such as Java, C or C++.

Strong typing is not the only way to implement a type system; also weak typing is possible.
In weakly typed languages the variables are declared without a type, and they can hold
any type of information. For example, consider the following lines of valid Matlab code:

nrVar = 3 ; % now nrVar i s con ta in ing i n t e g e r 3
nrVar = "my name " ; % now nrVar r e f e r s to S t r ing "my name"

The problem with weakly typed languages is that there is (in most cases) no compilation
time checking of types. So, for example, the following lines of code compile and execute
correctly:

x = ’ 1 ’ ;
y = 1 ;
z = x + y ; % now z = ?

Matlab is a weakly typed language and when executing the above code in it, z would end
up having value 50.0: ’1’ would first be converted to a numerical value (49 in ASCII) and
then the addition would be done with double precision numbers. The advantage of weakly

4

typed languages is that they allow easy conversion between types, and you never have
to provide two different versions of the same method for e.g. handling int and double

type input parameters. They have the disadvantage that it is a _lot_ easier to make
programming mistakes. When programming in Matlab, you _really_ have to understand
what is happening within the computer when the instructions are executed. After this
course, you hopefully do.

2 Computing

“The question of whether Machines Can Think... is about as relevant as the
question of whether Submarines Can Swim.” (E.W. Dijkstra)

The term computing refers to the abstract primitive operations that can be performed
with computers. With respect to computing, Matlab and Java are equivalent and they
can be used interexchangeably to solve the same problem. To understand what I mean by
this, consider the traditional pocket calculator: clearly it can be used to compute; if you
input 1+1, the result is computed with bitwise operations to come up with the output
2. Most pocket calculators also have memory for storing intermediate results with the
M+ key. The more advanced ones even allow to plot functions graphically. So is there
a difference between a pocket calculator and your desktop PC apart from the speed of
computation and the amount of memory available?

Intuitively you might be inclined to answer yes - most pocket calculators differ substantially
from desktop PCs. This is also the correct answer in a theoretical sense, with the main
difference being that desktop PCs (as most modern devices classifiable as computers) are
implementing a von Neumann architecture composed of the following three components:

1. memory for storing data processed in blocks of certain number of bits

2. instruction set including operations such as add and multiply, defined as data

3. processor that fetches instructions from the memory, and can read and write the
same memory

The main innovation in a von Neumann machine is that is allows for programs stored
in the same memory that is accessed by the processor. Although the pocket calculator
has memory (1), instruction set (2), and processing capability, it doesn’t use the same
memory for storing both the data and the program. By having stored programs, we can
use the same computer subsequently to write a program, to compile it, and to execute the
compiled code.

2.1 Numerical representation

Computers work only with binary digits (bits) that form an integer field modulo 2 (i.e.
0’s and 1’s). Bits are arranged in sequences of certain length that are the most primitive
unit of processing for a common programmer. The fastest unit of memory in a standard
PC is a register, and their size defines the processor’s bit size. Most modern computers
use 32 or 64 bit processing pipeline. The 32 bits can be used to represent integers within
the range

[

−231, 231 − 1
]

.

5

Computers use registers also for processing real numbers. When real numbers are repre-
sented with a fixed amount of bits, they can be represented only up to a certain precision.
The way real numbers are represented in modern computers is by having a possibility
of the decimal point to change it’s place, which is why they are called “floating point”
numbers. The floating point numbers are represented as a pair of signed integer exponent
e and signed fraction f, with a fixed base b for representing a number with p digits as:

(e, f) = f × be

For example a floating decimal (b = 10) with 8 digits can represent Plank’s constant
(6.6261 × 10−27) as

(−26, +.66261000)

= 0.66261 × 10−26

To make floating point computation easier, we often represent the numbers in a normalized
format so that

|f | < 1

−bp < bpf < bp

that is, the radix point appears just before the first significant digit of the number (i.e.
(−26, +.66261000) and not (−27, +6.6261000) or (−25, +.06626100). The standard way
to denote floating point numbers in exponential format in programming languages is to
present the fraction followed by ’E’ and the exponent, e.g. the Planck’s constant would
be ’0.66261E-26’.

Most computers use the IEEE 754 standard format for representing floating point numbers.
It defines the double precision (64 bit) floating binary format (b = 2) consisting of 1
bit for the sign, 11 bits for exponent, and 52 bits for the fraction. Figure 2.1 presents
the bit layout of the format. The 53 bits (52 + 1 for the sign) can represent fractions
with approximately 16 base-10 digits (53 log10 2 ≈ 15.955). Note that all three parts
(sign, exponent, and fraction) of the IEEE 754 double precision floating point number are
unsigned integers. The three parts are combined into a single number with:

value = (−1)sign(1 +
52

∑

i=1

b−i2
−i) × 2(e−1023),

where e is the exponent, b bits in the fraction (indexed with −i, and sign the single
sign-bit. The 1 +

∑

part of the value is within [1, 2). The exponents are offset encoded
(subtracted 1023) to enable full range bit use. Exponent 0x000 is used to represent zero
(with fraction = 0), and 0x7FF infinities (fraction = 0) and NaN (not a number, fraction
6= 0.

The internal representation of decimal numbers has large implications for scientific com-
putation. First of all, operations on floating point numbers are neither associative nor
distributive, that is,

6

exponent

(11 bit)sign

fraction

(52 bit)

63 52 0

Figure 2.1: Double precision (64 bit) floating binary representation of the IEEE 754
standard. (source: Wikipedia)

a + (b + c) 6= (a + b) + c, for many a, b, c

a ∗ (b + c) 6= (a ∗ b) + (a ∗ c), for many a, b, c

when a, b, and c are floating point numbers. For example, consider

a =0.42

b = − 0.5

c =0.08

now, when computed with IEEE 754 double-precision point binaries, we get

(a + b) + c = − 1.3878 × 10−17

a + (b + c) =0

due to 0.42 being inexactly represented. Second, the limited amount of bits used to store
the numbers can cause under- and overflows as the results of arithmetic operations can be
too small or large to be represented with the limited precision floating point numbers. For
example, 1.2345678 + 1.7654321 = 3 due to the inherent imprecision of the floating point
representation. Therefore, you should never compare the result of an operation involving
floating point arithmetics with an exact value, but rather see whether it is within some
threshold ǫ, e.g. 1.2345678 + 1.7654321 − 3 ≤ ǫ. The floating point numbers are actually
never precise, but represent an interval around the floating point representation. For
example, 3.0 represents all the numbers within the interval [3 − ǫ, 3 + ǫ].

Third, the accuracy of floating point operations’ results depends on the operation per-
formed. Roughly speaking, multiplication is less precise than addition, and repeated ap-
plication of addition/substraction can result in arbitrarily large errors if incorrect rounding
scheme is used (the IEEE 754 forces a correct rounding scheme so you do not have to worry
about it). The details of algorithms for floating point arithmetics are out of our scope1.
Although the standard way of performing floating point computations (also in Matlab) is
with double precision numbers, it is also possible to represent numbers with arbitrary high
precision as byte arrays. Most programming languages do not include such functionality
built in, so if very high precision computations are found necessary, an external library
must be used (such as the CERN Colt for Java).

1For more information, see The Art of Computer Programming, vol. 2 (2nd ed.), sect. 4.2.2.

7

2.2 Computational complexity

Now that we have some idea about accuracy of results of the numerical operations, the
next important question is how long will the different operations take. Addition of two
double precision floating point numbers is quite complicated, but luckily most processors
include a separate floating point unit (FPU) that makes the processing very fast. Then
what about arbitrary precision numbers? To simplify the question, lets consider addition
of two arbitrary length integers. Without loss of generality, let us consider them to be
represented as bit arrays of the same length n. The sum we want to compute is then of
length n + 1.

The standard schoolbook addition algorithm provides us with a simple way of adding
numbers of an arbitrary base. For example, when n = 4, computing 3 (=0011b) + 5
(=0101b) proceeds from right to left by carrying the first overflowing bit to the second
least significant bit, etc, and resulting in 8 (=1000b). So for each bit in the input, we have
to perform 2 operations: adding together the bits of each operand, and adding to that the
carry bit. So for adding together numbers with n bits, we actually have to perform 2n
operations.

In case of integers of the size processed within the processor (n=32 or 64), the addition
operation is extremely fast. But sometimes we need to perform big integer computations,
and n can be 100000000 - then the overhead in performing the additions can make a
noticeable difference for the program running time. So even the most elementary oper-
ations take time dependent on the input size n. In the case of integer addition, when
input size grows, the amount of computational effort required by the addition algorithm
grows linearly with respect to the input size. However, this is not the case in general with
algorithms. For example, consider sorting an array of integers such as:

2 3 1 5 4

There are various algorithms for sorting, and we will come back to them in Section 6. For
now, let us consider insertion sort that sorts the array by considering every element of the
array in turn, and places them in their correct places according to increasing values. This
resembles the way people sort their hand when playing card games - putting each card in
turn in their place to have the cards arranged according to suite, number, or both. The
algorithm for insertion sort is:

1 function a = i n s e r t i o n S o r t (a)
2 for j =2: length (a)
3 key = a (j) ;
4 i = j −1;
5 while i > 0 && a (i) > key
6 a (i +1) = a (i) ;
7 i = i −1;
8 end

9 a (i +1) = key ;
10 end

11 end

Insertion sort for the previously introduced array proceeds as follows (the currently pro-
cessed element is in bold):

8

2 3 1 5 4 starting array
2 3 1 5 4 j=2
1 2 3 5 4 j=3
1 2 3 5 4 j=4
1 2 3 4 5 j=5

Let us now analyze the insertion sort to predict the amount of resources (memory and
running time) it will require to sort an array of length n. We will assume a single-processor
random-access machine (RAM) in which instructions are processed one after another - no
parallelism is allowed. For memory, we can easily conclude that the algorithm uses no
additional memory dependent on the input size n - only a constant amount of additional
temporary variables are needed. Another way to express this is to say that insertion sort
does the sorting in place.

The running time of algorithms is analyzed by counting the required amount of primitive
operations such as assignments and arithemetic operations. The exact CPU cycles required
by these operations vary by the implementation language and operating hardware used.
Counting the computation steps instead of their exact execution times allows us to analyze
the algorithms on a more abstract level. The total amount of these steps is the algorithm’s
computational cost.

Let us denote by ci the cost of executing line i, and by tj the amount of times the while
loop test on line 5 is executed. For the previously presented insertion sort algorithm the
costs and the number of times each line is executed are:

Line 2 3 4 5 6 7 9

Cost c2 c3 c4 c5 c6 c7 c9

Times n n − 1 n − 1
∑n

j=2 tj
∑n

j=2(tj − 1)
∑n

j=2(tj − 1) n − 1

Now by summing the products of the costs and times, we get the total running time of

T (n) = c2n + c3(n − 1) + c4(n − 1) + c5

n
∑

j=2

tj + c6

n
∑

j=2

(tj − 1) + c7

n
∑

j=2

(tj − 1) + c9(n − 1)

Note that with the same input size n we can still get different running times depending
on the tj . For example, if the array is already completely sorted (a(i) ≤ a(j) ∀i < j, i, j ∈
{1, . . . , n}), then tj = 1 ∀j ∈ {1, . . . , n} and the best-case running time is

T (n) = c2n + c3(n − 1) + c4(n − 1) + c5(n − 1) + c9(n − 1)

= (c2 + c3 + c4 + c5 + c9)n − (c2 + c4 + c5 + c9)

By replacing the two sums of ci’s with constants a = c2 + c3 + c4 + c5 + c9 and b =
c2 + c4 + c5 + c9 we can express this as

T (n) = an + b

that is a linear function of n. Now, assume that the array is in an inverse order (a(i) >
a(j) ∀i < j, i, j ∈ {1, . . . , n}). The cost becomes considerably higher as lines 5, 6, and 7

9

are executed more times. In every iteration of the while loop the current element a(i) must
be compared with each of the elements in the already sorted subarray a(1), . . . , a(i − 1),
so tj = j ∀j ∈ {2, . . . , n}. Now the worst-case running time is

T (n) = c2n + c3(n − 1) + c4(n − 1) + c5

n
∑

j=2

j + c6

n
∑

j=2

(j − 1) + c7

n
∑

j=2

(j − 1) + c9(n − 1)

= c2n + c3(n − 1) + c4(n − 1) + c5(
n(n + 1)

2
− 1) + (c6 + c7)(

n(n − 1)

2
) + c9(n − 1)

= (
c5

2
+

c6

2
+

c7

2
)n2 + (c2 + c3 + c4 +

c5

2
−

c6

2
−

c7

2
+ c9)n − (c3 + c4 + c5 + c9)

that can be expressed by replacing the ci’s with constants a, b, and c, giving a quadratic
running time of

T (n) = an2 + bn + c

Most of the time when we are analyzing algorithms, we are interested in their worst case
performance, because it gives an upper bound on the complexity. This allows us to give
some guarantees on how bad the algorithm can perform. Fundamental algorithms are
executed even in a single piece of software numerous times repetitively, so the probability
that the worst case scenario happens is often high. Also, for some algorithms the input
leading to worse case running time occurs often, especially when the input comes from a
real process (e.g. new customers to be sorted in decreasing customer numbers).

Calculating the “exact” running time as we did it for analysis of the insertion sort is
laborous. Luckily such a detailed analysis is not often required, as we are interested mostly
in the order of growth of the complexity. That is, when the size of input n increases, how
fast does the computational cost T (n) increase? The table below shows the execution
times of different T(n) assuming processing of 109 instructions per second. Note that
algorithms with a computational cost of 2n or n! are not solvable in a reasonable time
already with very modest problem sizes.

10 100 1000 1 0000 100000 1000000

n 10−8s 10−7s 10−6s 10−5s 10−4s 10−3s

n log n 10−8s 2.4 × 10−8s 2.0 × 10−6s 3.5 × 10−4s 0.1s 56s

n2 10−7s 10−5s 10−3s 0.1s 10s 17min

n3 10−6s 10−3s 1s 17min 12d 32y

2n 10−6s 4.0 × 1013y 3.3 × 10284y

n! 3.6 × 10−3s 3.0 × 10141y

So instead of calculating the amount of times different instructions are executed when de-
termining the complexity of an algorithm, we are usually more interested in its asymptotic
complexity. That is, given an input size n > n0, where n0 is some constant value, how fast
do the required resources (execution time or memory) grow? Furthermore, to be able to
apply techniques of mathematical analysis, we would like to state the algorithm’s cost as a
function of the input size n. The asymptotic behaviour of a function depends only on the
highest order term, and not at all on the constants. For this we use the big-O notation:
given a function g(n), the set of functions

10

O(g(n)) = {f(n) : ∃c > 0, n0 > 0 : 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0}

are asymptotically O-equivalent. For example, our previous quadratic complexity an2 +
bn + c ∈ O(n2), and also 3n2 ∈ O(n2) and n2 + n log n ∈ O(n2).

With the O-notation our analysis of algorithms and determination of their practical use-
fulness gets a lot easier. We can easily compare speed of algorithms, and one of O(n2)
time complexity is in practice most of the cases faster than another one with a complexity
of O(n3) given a sufficient input size n. Any algorithm with a polynomial complexity
(O(g(n)), where g(n) is a polynomial) is called tractable - it grows sufficiently slowly to be
possibly of practical use. Understanding the O-notation is the foundation for using and
designing efficient algorithms, and for comprehending the complexity of problems often
encountered in various subfields of econometrics and management science. Unfortunately
there do not exist efficient algorithms for many practically relevant problems, and some
of these problems themselves are believed to be of non-polynomial structure2.

3 Memory organization

“Computers have lots of memory but no imagination.” (Unknown)

We assumed unlimited memory in the complexity analysis discussed in the previous sec-
tion. In practice the memory is always limited although large. The memory requirements
of an algorithm can depend on the input size, and they can be analyzed in a similar way
as the running time, stated as a function of the input size with the O-notation (e.g. O(n)).

The way we represent information has implications on how much memory is required. For
example, modern computers use 64 bit registers, meaning that they can operate efficiently
with 64 bit integers represented as binary numbers. The last bits of number 3 are 0011,
and of number 4 they are 0100. We could also consider representing integers by having
the index of the bit corresponding to the number to be non-zero and the other bits zero,
i.e. 3 would be represented with 0100 and 4 with 1000. This representation, however, is
not minimal: most of the bits would stay unused as e.g. 1010 would not represent any
number (or alternatively number 6 would have 2 different representations).

It is easy to see that the standard technique for representing positive integers is optimal,
although for negative ones this is not the case (they are most often represented as 2’s
complements). For higher order data structures the memory representation can be more
complex to understand, and it can make a large difference for the amount of memory
required by an algorithm operating on the data structure and also affect its execution
time. Memory of computers is linear and addressed with an integer index indicating a slot
in the memory. In high level programming languages such as Matlab or Java the memory
location of a variable is invisible to the programmer unless you e.g. print out the object
reference variable in Java. The actual memory address is in almost all cases irrelevant for
the programmer.

2This relates to the largest still unsolved problem in mathematics: if the solution of a problem can be
verified by a computer in polynomial time, can it then also be solved in polynomial time (P=NP)? Most
scientists believe that the answer is no (P 6= NP), but no proof has yet been given. For more discussion,
see e.g. http://en.wikipedia.org/wiki/P_versus_NP_problem.

11

http://en.wikipedia.org/wiki/P_versus_NP_problem

Standard PC architecture is composed hierarchically of memories of different speed and
size. The arithmetic unit is the core of the processor and can perform very fast operations
on the processor registers - these are the fastest memory available and they often serve
a specific purpose (e.g. for adding numbers together or pointing to a certain memory
location). There are, however, a very limited amount of registers available (usually between
5 and 50). The next fastest memory is what is commonly called the main memory of the
computer - its random access memory. For operating on it, the contents have to be
first be loaded into the processors register(s), and after performing the desired operations
the result has to be stored back in the main memory. The amount of main memory in
standard PC’s is large (e.g. 3GB) but not unlimited. In case the main memory runs out,
the operating system can swap infrequently used memory pages into the hard disk, thus
expanding the main memory in a way that is very slow to access.

3.1 Matrix representations

Many data structures can be represented as matrices and a lot of commonly used algo-
rithms (e.g. simplex) can be formulated to operate on matrices. Consequently Matlab
has been designed to be matrix-oriented. In type conversions of Matlab, matrices have
priority: if there are two ways to convert a type, the conversion to matrix has priority.
For example,

a = [3 , 4] ;
b = ’ 1 ’ ;
c = a∗b ;

leads to c having value [147, 196] as b is first converted into a matrix of integers, and
afterwards a matrix multiplication is performed.

Matrices can be represented in different ways. Let us consider first the naive approach:
storing matrices as 2-dimensional arrays. In this way, the first dimension contains refer-
ences to the second dimension, that in turn contains the actual values. This is illustrated
in Figure 3.1. Now in order to access the element in location [a, b], we have to do 2 mem-
ory lookups: first to fetch the location of the column with a lookup in the first dimension
[a,], and then to fetch the actual value by the second dimension [a,b].

We can represent matrices also in a more efficient way. Remember that computer memory
is organized in a linear manner: there is essentially only a single dimension. Now let us
exploit the fact that matrices are always rectangular: all rows are of the same length,
and all the columns as well. This allows us to represent matrices as a one-dimensional
array of length a*b, where element at [a, b] can be found at index [(a-1)*n+b]. This
is illustrated in Figure 3.2 showing a row-major matrix representation: the elements are
ordered according to sequences of rows. Another way of flattening a matrix to a linear
sequence is to order the elements by columns in a column-major order. Then the element
[a, b] would be found at index [(b-1)*m+a]. For example, a matrix of

[

1 2 3
4 5 6

]

would be represented as [1 2 3 4 5 6] in the row-major order, and [1 4 2 5 3 6] in the
column-major order. The row-major order is more efficient when the elements are accessed

12

Figure 3.1: Naive representation of an m × n matrix.

Figure 3.2: Row-major representation of an m × n matrix.

sequentially. The column-major one enables more efficient matrix multiplication. Treating
a row-major array as a column-major array is the same as transposing it. The choice or
row- or colum-majority can affect non-asymptotically the running times of algorithms
operating on the matrices as elements that are stored and accessed contiguously can be
cached. Matlab stores matrices in the column-major order.

The row- and column-major representations are efficient when the matrices are dense, that
is, they contain a reasonably small amount of zero elements. When matrices are sparse,
that is, they contain a lot of zeroes, another representation is more efficient. For example,
consider the following matrix:

0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 0
1 0 0 0 0

Representing it directly as a flattened matrix would require 25 integers of memory. Sparse
matrices can be represented more efficiently by simply listing the non-zero elements. The
previous matrix would then have the representation ([3, 4, 2], [5, 1, 1]) that requires
only 6 integers of memory. There are also matrices with special structures that can be
represented more effficiently, e.g. the diagonal matrix:

13

1 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 7 0
0 0 0 0 4

that can be represented as a vector listing elements on the diagonal [1, 3, 2, 7, 4]. A
special case of diagonal matrices is the identity matrix In, e.g. I5:

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

that can be represented with a single integer n.

3.2 Matrix multiplication

Multiplication of matrices (C = AB) is one one of the most important algorithms for
matrix-oriented languages such as Matlab. We can imitate the schoolbook way of multi-
plying two matrices to produce the naive multiplication algorithm:

function C = mult ip ly (A, B)
C = zeros (rows (A) , columns (B)) ;
for (i =1: rows (A))

for (j =1: columns (B))
sum = 0 ;
for (k=1:columns (A))

sum = sum + A(i , k) ∗ B(k , j) ;
end

C(i , j) = sum ;
end

end

end

Now, without a loss of generality, assume that A and B are square and of the same size n×n.
Then the running time of multiply is O(n3) - quite a high complexity for an algorithm
that is often applied. There have been devised other, more efficient algorithms, of which
the most well known one is the Strassen algorithm. Let us assume that n is a power of 2
(if it is not, empty rows and columns can be added), and divide the multiplication into
submatrices as

[

r s
t u

]

=

[

a b
c d

] [

e g
f h

]

Now, the matrix multiplication breaks down to computing

14

r =ae + bf

s =ag + bh

t =ce + df

u =cg + dh

of which each one is composed of two multiplications of n/2 × n/2 matrices and addition
of their n/2 × n/2 products. The multiplication of n/2 × n/2 matrices can be done in the
same manner, leading into a recursive algorithm with a running time of

T (n) = 8T (n/2) + O(n2)

This equation is not yet completely solved, but we can write it open as

T (n) = 8T (n/2) + n2

= n2 + 8((n/2)2 + 8T (n/4))

= n2 + 8((n/2)2 + 8((n/4)2 + 8T (n/16)))

= n2 + 2n2 + 4n2 + 8T (n/16)))

and as the ith term in this series is 2i−1n2,

T (n) = n2 + 2n2 + 4n2 + · · · + 2log2 nO(1)

= n2
log2 n
∑

i=0

2i + O(nlog2 2)

= n2 2log2(n+1) − 1

2 − 1
+ O(n)

≤ n2O(2log2 n) + O(n) = n2O(n) + O(n)

= O(n3)

which is the complexity of the naive matrix multiplication algorithm. But Strassen found
out that not all 8 matrix multiplications actually have to be made, as it is possible to
compute C with 7 multiplications and 18 additions as

P1 = ag − ah

P2 = ab + ah

P3 = ce + cd

P4 = df − de

P5 = ae + ah + de + dh

P6 = bf + bh − df − dh

P7 = ae + ag − ce − cg

r = P5 + P4 − P2 + P6

s = P1 + P2

t = P3 + P4

u = P5 + P1 − P3 − P7

15

leading to an overall computational cost of

T (n) = 7T (n/2) + O(n2)

= O(nlog2 7)

= O(n2.81)

which is asymptotically significantly faster than the naive addition. Strassen’s algorithm
is, however, slower with small n, and often the matrix multiplication algorithm to be used
is chosen on-the-fly based on the dimensionality of the matrices to be multiplied. There
are even more efficient matrix multiplication algorithms with complexity O(n2.38), but
they are extremely complex and faster only with reasonably large values of n.

The Strassen algorithm shows a divide-and-conquer approach to problem solving: the
original problem is divided into subproblems that can be individually solved. The di-
vided subproblems can then be again divided until a problem that is trivial to solve is
encountered (e.g. multiplying matrices of size 2 × 2). Then the solutions to subproblems
are composed one level at a time to form a solution to the original problem. Divide-and-
conquer algorithms have been found to be very effective in many problems, such as sorting
that I will cover later on.

4 Program correctness

“There are two ways to write error-free programs; only the third one works.”
(A. J. Perlis)

“There are two ways to write error-free programs; only one third works.” (V.
Milea)

Programming by the imperative paradigm can be very efficient as the statements are often
directly executable. However, imperative paradigm does have its disadvantages, the most
severe of them being side effects. For example, consider the following method for counting
the sum of integers in an array:

public stat ic int countSum (int [] array) {
for (int i =1; i<array . l ength ; i++) {

array [i] = array [i] + array [i −1] ;
}
return array [array . length −1] ;

}

It is easy to see that the method works and returns a sum of the numbers in the array.
However, it also does something else as well: as a side effect it modifies the array. This is
unnecessary for computing the sum as we could use a local variable to hold the temporary
sum instead, and the user of this method probably does not expect such a side effect to
occur. Undesired side effects make the code difficult to understand and cause hard to find
bugs. But not all side effects are undesired; for example, consider a method for sorting
the contents of an array in an ascending order. In that case the side effect is the desired
functionality.

16

We distinguish between two types of methods: functions and procedures. In the object
oriented paradigm these relate to accessor- and mutator methods. Functions are methods
that return a value, but do not alter the method parameters in any way. Procedures are
ones that alter some of the method parameters, and often do not return a value.

When a method is called in Java, the object parameters are passed as references: if the
object contents are altered from within the method, the changes are visible to the caller
(and the method is a procedure). This is called passing parameters by reference. Another
option is to pass by value; this is how primitive data types are passed in Java - a local
copy of the parameter is created and any changes to it are visible only within the method
scope. Also more complex data types (e.g. arrays) can be passed by value, meaning that
in the method call a local copy has to be created. This can be extremely inefficient - for
example, consider a method that finds a smallest element in the array. As there is no side
effects, making a local copy of the parameter in unnecessary, but if pass by value scheme
is used on the language level, such is always created, making it impossible to implement
the algorithm efficiently.

Matlab consistently passes parameters by value and as a caller you never have to worry
about side effects. In case you want to modify one of the parameters, you have to return
the local copy and the caller can then store it as the new value. So all methods are
functions in Matlab, though passing object handles allows to pass objects by reference
(but remember: matrices are _not_ objects in Matlab). In addition, some optimization
is made by the Matlab compiler in passing a reference instead of a value if the parameter
is not modified within the function.

4.1 Pre- and post-conditions

When you write a method there is always a contract between the method designer (the
supplier, you) and the caller (consumer, possibly someone else). The method signature
defines the contract only partially and its main function is to enable compilation time
checking of programming errors preventable through design of the language. However,
there are often conditions in the contract that cannot be stated in the signature. For
example, consider a method with the following signature for sorting an array from a
certain index upwards:

function array = sortArrayFromIndex (array , index)

Now the contract between method supplier and consumer could consist of the following
parts:

1. The index has to be in the range [1, length(array)] (responsibility of the con-
sumer)

2. If consumer calls the method adhering to (1), then after the method call the follow-
ing holds:
array[index] < array[index+1] < ... < array[length(array)] (responsibil-
ity of the supplier)

These are the method pre- (1) and post-conditions (2). The contract allows us to abstract
what is computed from how it is done. Most programming languages do not provide
reserved words for stating pre- and post-conditions, as they anyway cannot be checked

17

by the compiler. The general convention is to document the conditions in the method
documentation, and e.g. in the Java API you will find pre- and post-conditions stated
widely. When writing down the conditions, you should be as exact as possible, and it
is generally a good idea to state the contract in an algorithmic format if possible. For
example, our sorting algorithm’s contract could be documented as:

% Sor t s the array in ascending order s t a r t i n g from index
%
% PRECOND: 0 < index <= l e n g t h (array)
% POSTCOND: array (index) < . . . < array (l e n g t h (array))
function array = sortArrayFromIndex (array , index)

Sometimes, especially in pseudo-code, pre-conditions are documented as “Requires” and
post-conditions as “Ensures”.

When designing a method where you state the pre-conditions, if the caller does not adhere
to the contract, you are not obliged to ensure correct computation from that point onwards
- there is a clear mistake in the program logic. However, it is recommended to terminate
program execution at this point as finding bugs due to breaching of pre-conditions is often
extremely hard. Most programming languages provide a special method assert(x) for
this purpose. If x evaluates to false, the program execution is terminated with a message
explaining the assertion. So for example our sorting method’s pre-condition could be
assured with:

function array = sortFromIndex (array , index)
a s s e r t (index > 0 && index <= length (array)) ;
. . . % do the ac t u a l s o r t i n g

end

Often the assertions are enabled only during the program development phase, and when
the software is deployed, the assertions are disabled with compiler or virtual machine
settings. In Java the assertions are not enabled by default (but need to be enabled in the
virtual machine specifically), whereas in Matlab they are always enabled.

4.2 Halting problem

The main difference between mathematical formulas and algorithms is that whereas in
mathematics the relations are defined to be invariant by time (e.g. x = 2 means that x
is 2 now and forever), in algorithms x would be a variable and its value can change over
time. This makes proving program correctness extremely hard. So how can we assure that
a program eventually ends its execution? Consider the following three algorithms:

for (i =1:10)
p r i n t f ("%d th i n t e g e r \n " , i) ;

end

18

nr = input ("How many i n t e g e r s you want to be p r in ted ? ") ;
for (i =1: nr)

p r i n t f ("%d th i n t e g e r \n " , i) ;
s l e ep (10∗ i) ;

end

green = true ;
while (green)

green = f a l s e ;
s l e ep (1 0) ;
green = true ;

end

The first program will iterate 10 times. The second iterates an amount input by the user
(maximum of the largest possible integer), and the third one will iterate forever. This
brings us to the question that, given a program and an input to the program, can we
algorithmically determine whether the program will eventually stop when it is given that
input? We could try with the input and wait for a certain amount of time. If the program
stops within this time, we know it stops. But if it does not stop, the only thing we can
conclude is that it does not stop within the time we have waited. For example, this way
we would never find out whether an algorithm with complexity O(n!) stops with a worst
case input of size 100.

This is known as the Halting problem: given a program, decide algorithmically (i.e. with
another program) whether the program finishes running or continues to run forever. This
problem is equivalent to the previous one that takes the input into account. Let us be
optimistic and assume that there exists a solution (a program) H to this problem that
takes two inputs:

1. a program P to analyze

2. an input I

H would then output “halt” if H determines that P stops on input I or "loop" otherwise.
Remember that with stored program computers the programs are considered data as well:
we can now call H with P as both the program to analyze and as the input: H(P, P).

Let us now construct another program K that takes the output of H as its input and
outputs “halt” if output of H is “loop”, and loops indefinitely otherwise. That is, the
output of K is the inverse of the output of H given as its input, apart from looping
instead of just expressing to loop. Given that K is a program, we can use it as an input
to H. Now:

• if H says that K halts, then K itself would loop

• if H says that K loops, then K will halt

So given any solution H to the halting problem, we can construct an input that always
causes the solution to fail. Therefore the halting problem is undecidable.

19

4.3 Loop termination & invariants

So programs cannot be used to solve the halting problem. In procedural programming
paradigm the main structure causing infinite computation is iteration (for and while

loops). Remember that recursion can always be converted to a computationally equivalent
iteration. Although we cannot have algorithms that determine whether a loop will termi-
nate, we can ensure a termination condition ourselves. And we have another technique
for assuring correctness of the loop: the loop invariant. Whereas pre- and post-conditions
allow us to document the contract between designer and user of a method and to con-
trol program correctness on a level of abstraction of the method, the loop termination
condition and invariant allow to ensure correct internal logic within the method.

Loop invariants state a condition that holds in the beginning of the loop and in the end of
each iteration. To illustrate what I mean with this, let us consider an algorithm for finding
the maximum value in an array. The algorithm and its corresponding loop invariant is

i n t i =1;
max = array (1) ;
while (i < length (array)) % i n v ar i an t : max = l a r g e s t o f array [1 . . i]

i f (max < array (i +1))
max = array (i +1);

end

i = i +1;
end

Before entering the loop max is largest of the array[1..1], so the invariant holds (max is
array[1]). At the end of each iteration, max is has either its previous value, or the next
value to check if that is larger than max. So the invariant holds also at the end of the loop.
By induction on i we can prove that the algorithm finds the largest element of the array.
The termination condition is simple to assess: on each iteration, we increase the loop
counter by 1, and as the termination condition compares the counter to length(array)

that does not change during the iterations, we can conclude that the algorithm always
terminates.

For a more complex example, consider our previously introduced signature of the sort-
ing algorithm with an added implementation of insertion sort with a corresponding loop
invariant for the outer for-loop:

20

function array = inser t ionSortFromIndex (array , index)
a s s e r t (index > 0 && index <= length (array)) ;
for j=index : length (a)
% loop i n v a r i an t : array [index . . j] i s sor t ed

key = array (j) ;
i = j −1;
while i > index && array (i) > key

array (i +1) = array (i) ;
i = i −1;

end

array (i +1) = key
end

end

Now notice that the loop invariant does not hold within the loop: it holds before entering
the loop, and at the end of each iteration, but not necessarily within it.

5 Data structures

“A list is only as strong as its weakest link.” (D.E. Knuth)

Programming is about data and operations. Until now I have concentrated mostly on the
computational operations. As we already learned when discussing matrices, the way the
elements are stored has implications on how much memory is required but also on how
fast elementary operations on a set of elements takes. For example, matrices are a static
data structure and if a 2×2 matrix is resized to a 3×3 one, memory needs to be allocated
for the new matrix and then the data copied from the old matrix to the new one. This
requires O(n) operations, which is reasonably expensive if only 1 additional element needs
to be stored. Other data structures allow dynamic allocation with the cost of O(1), but
are slower for accessing an arbitrary element of the set.

Data structures provide means to store elements with keys. For example, when storing
integers, the keys are the actual integer values themselves. The storage structure itself is
dynamic: new elements can be added and removed, and an element with a certain key can
be seached for. If the structure allows duplicates of elements with keys, it is a bag or a
multiset. For example, arrays are bag structures as they allow to store twice the element
with the same key. If duplicates are not allowed, we talk of a set that has semantics of a
mathematical set. In addition, the set of elements can be ordered, partially ordered, or
unordered.

Knowing data structures is a prerequisite for programming efficiently as there always exists
a complexity trade-off between the different operations involved in searching, storing and
retrieving values with the chosen data structure. Consider the most elementary data
structure: an array. Now when you initialize an array, a certain amount of memory is
allocated in the linear memory, exactly the size of the array. At some point you might
need to add new elements into the array, so new memory has to be allocated and the
elements copied. You could imagine allocating a larger block of memory in the first place
and using a variable to store the amount of free places. But at some point you might need

21

Figure 5.1: Stack with an array of size 6 after 4 pushes (5, 7, 6, 2) and one pop (removing
2).

more space than is contiguously available. So there is no way to ensure O(1) insertion
operation with standard arrays - the operation is inherently of complexity O(n). For
constant time insertion, we have to reconsider how to store and access the elements, and
to use more advanced data structures. The table below shows the complexity of standard
operations and data structures I will discuss in this section.

Structure Random access Insertion Deletion Search Min/Max

Array O(1) O(n) O(n) O(n) O(n)

Linked list O(n) O(1) O(1) O(n) O(n)

(balanced) Tree N/A O(log n) O(log n) O(log n) O(log n)

Heap N/A O(log n) O(log n) O(n) O(1)

5.1 Stacks and Queues

Before we discuss the other data structures, let us start with two elementary ones, stack
and queue, that simply restrict the use of a standard array. Stacks are arrays that allow
elements to be pushed to the top, and popped from the top as well. Stacks implement
the so-called last-in first-out (LIFO) semantics: the last element that was pushed is the
first one to get popped. Queues implement first-in first-out (FIFO) behaviour: the first
element that was queued is the first one to be dequeued. Stacks and queues differ from
arrays in that random access is not allowed: the elements can only be added to the end
and accessed from the end (stack) or from the beginning (queue) of the structure.

Stacks can be implemented as an array augmented with an additional variable indicating
the top index of the stack. This is illustrated in Figure 5.1: the stack is represented with
an array of size 6. Initially the stack is empty and top(S) = 0. Then, when push(S, 5) is
executed, top(S)=1. Three more elements are pushed (7, 6 and 2), after which top(S) =
4. Finally the last element is popped and top(S) becomes 3. Note that there is no need
to remove the element from the array unless it is an object reference (otherwise garbage
collection would not free the memory used by the object).

When more than 6 elements are added to the stack, a new array needs to be allocated
and the current elements copied there. So the complexity of operations of a stack is at
most the complexity of operations of an array without the possibility of random access.
Although it offers “just” restrictions with no gains in operation complexity, stack is widely
used due to its close link with recursion. For example, when a program is loaded into
execution, a certain part of the main memory is reserved for its local stack, and when
a method call is made, the local variables and the return address from the method are

22

Figure 5.2: Queue with an array of size 4 after 4 queues (3, 7, 6, 2), 3 dequeues (remove
3, 7 and 6), and 1 enqueue (5): contents of Q are [2, 5].

Figure 5.3: Single-linked list with three elements representing linear order [5, 7, 6].

pushed to the stack. When the method returns, these are popped. This is an efficient and
simple technique allowing a virtually unlimited depth of recursive method calls (until the
memory runs out).

Queues are composed of a head and a tail. When new elements are inserted into the queue
(i.e. queued), they are placed at the tail of the queue. When an element is removed (i.e.
dequeued), it is taken from the head of the queue. The most efficient way to implement
queue in an array is to use a circular structure: that is, if the tail goes past the end of the
array, it is moved to the beginning. This is shown in Figure 5.2. Note that the enqueue
operation can cause an overflow if the array is not large enough to hold all the elements
and the operation can be implemented so that it allocates new memory when this happens.
Dequeue and pop are not applicable when the corresponding data structure is empty; this
should be documented with a pre-condition.

5.2 Linked list

Linked list is a data structure in which each element is allocated its own node that points
to the following node. Like the array, it is a linear order, but without the possibility
of referring in O(1) time into a random element. Each node has a key, that is, the data
contents of the node, and a reference to the next node. A sample list structure is presented
in Figure 5.3. A linked list can be referred to with its first element.

When a program is loaded into execution, it is organized into three segments: text, stack,
and heap. The text segment contains the actual executable machine code. As mentioned
in connection to stacks, the stack segment is used for storing method return addresses
(to the text segment) and temporary variables of the method calls. The third segment,
heap, is the memory segment used for dynamic memory allocation (e.g. with Java’s new

operator). Heap allocation in Matlab is very limited and most of data types can only
be referred to by value: only objects can be passed around by references that are called
handles in Matlab. For implementing linked list nodes, we can use a class with no methods
and public access to its member variables:

23

c l a s s d e f node < handle
p r o p e r t i e s

key
next

end

end

We need also another class for holding the first node:

c l a s s d e f l i n k e d l i s t < handle
p r o p e r t i e s

f i r s t
end

end

Note that there are no null pointers in Matlab, but we can use [] (empty matrix) to
simulate a null. A list can be now initialized by constructing a first node and referring to
it in the list structure:

function L = i n i t L i n k e d L i s t (va lue)
L = l i n k e d L i s t () ;
fNode = node () ;
fNode . key = value ;
fNode . next = [] ;
L . f i r s t = fNode ;

end

Searching for a node with a certain key is O(n) operation like with arrays, and can be
done as follows:

function node = findKey (L , key)
curNode = L . f i r s t ;
while (~ isempty (curNode))

i f (curNode . key == key)
node = curNode ;
break ;

end

curNode = curNode . next ;
end

end

Inserting nodes to the list can be made in the beginning or after a certain node. When
a node is inserted to the beginning, the firstNode reference has to be changed. When a
node is inserted after another node, re-routing of the references has to be done. Figure 5.4
illustrates these situations. The insertion algorithms are:

24

Figure 5.4: Insertion a node with key 8 to the beginning (top) and to after the node with
key 5 (bottom).

function i n s e r t I n toBeg i n n i ng (L , va lue)
newNode = node () ;
newNode . key = value ;
newNode . next = L . f i r s t ;
L . f i r s t = newNode ;

end

function in ser tAfterNode (node , va lue)
newNode = node () ;
newNode . key = value ;
newNode . next = node . next ;
node . next = newNode ;

end

When a node is deleted, it can simple be spliced out from the list, and the links pointing
to and from it rerouted. This is shown in Figure 5.5. Note that for deleting a node, we
need to know which node points to it in order to do the re-routing. Deleting the first node
is easier: we just need to set the list’s first to point to the second node. The algorithms
for deletion are:

25

Figure 5.5: Deleting the second node from the linked list of Figure 5.3.

% PRECOND: node . next != []
function deleteNodeAfter (node)

node . next = node . next . next ;
end

% PRECOND: L . f i r s t != []
function de l e t eF i r s tNode (L)

L . f i r s t = L . f i r s t . next ;
end

Linked lists can be used for representing stacks, and provide O(1) push and pop operations,
although the memory required is larger as for each element in the stack also the reference to
the next node needs to be stored. Linked lists can also be used as circular structures, and
in this case the next of the last node in the list will point to the first node, as illustrated
in Figure 5.6.

Figure 5.6: A circular linked list.

Linked lists can also be double-linked: this allows to navigate the list both forward and
backward. Instead of only a reference to the next node, the double linked list nodes have
references to both the previous and the next node. Additionally the list structure has
references to both first and last nodes of the list instead of just to the first one.

5.3 Trees

Trees are the most important nonlinear structure. They are acyclic undirected graphs
with one node designated as the root of the tree. Trees are defined recursively as:

1. empty T is a tree

2. if T is not empty, a T has exactly one node designated as the root(T)

3. the remaining nodes (T − root(T)) of a tree are partitioned into m disjoint sets
T1, . . . , Tm. Each of these are in turn a tree, and are called subtrees of T.

Tree nodes can be implemented in Matlab similarly to how we did the nodes of linked
lists:

26

c l a s s d e f treeNode < handle
p r o p e r t i e s

key
l e f t
r i gh t

end

end

The tree can then be referred to simply by referring to the root node. Nodes in a tree relate
to each other similarly as people do in a conventional family tree: Figure 5.7 presents an
example tree with these relations. Trees have always a single root (here 6). Here the root
has three children (9, 3 and 2). Each of them has the other two as siblings. The root is
a parent of 9, 3 and 2. 9 is an ancestor of 5, and 5 is a descendant of 9. This tree has 4
levels: they are numbered starting from 0 (the root). Depth of the tree is its maximum
level, in this case 3, which is the maximum amount of edges from the root to any node.
Nodes without any children are called leafs.

6

9 3

4

1 5

7

Level 0

Level 1

Level 2

Level 3

Root

Sibling of 9

Ancestor of 5

Descendant of 9

Child of 3

Parent of 1

2

Leaf

Figure 5.7: An example tree presenting different relations between its nodes.

Usually trees are used with a maximum amount of subtrees m. The simplest trees are
binary trees with m = 2 (m = 1 would be a linked list). Binary trees are especially handy
for presenting ordered data. For example, arithmetic expressions can be represented with
tree structures by taking into account standard rules of operator precedence (* and /
before + and -). The following arithmetic expression

a − b ∗ (c/d + e/f)

can be represented with the binary tree in Figure 5.8. The order of traversing the tree is
important here: to “read” the original arithmetic expression we have to process the tree
with an inorder traversal scheme:

1. Traverse the left subtree

27

2. Visit the root

3. Traverse the right subtree

There are two other ways to traverse the tree as well: preorder traversal (root, left subtree,
right subtree) and postorder traversal (left subtree, right subtree, root). Note that travers-
ing the tree representing the arithmetic expression with the preorder traversal results
in polish notation (-a*b+/cd/ef), and the postorder traversal in reverse polish notation
(abcd/ef/+*), both eliminating the need for parentheses.

-

a *

+

/ /

c d e f

b

Figure 5.8: Binary tree representation of a − b ∗ (c/d + e/f).

A binary search tree is a binary tree with the extra property that key of the root of the
left subtree < root < key of the root of right subtree. When data is structured as a binary
search tree, finding an element with a certain key can be fast. The algorithm for finding
a node with a certain key is:

% Returns a node wi th the g iven key , or [] i f such does not e x i s t
function n = findNode (T, key)

i f (T. key == key)
n = T;

e l s e i f (key < T. key)
i f (T. l e f t == [])

n = [] ;
else

n = findNode (T. l e f t , key) ;
end

else % key > T. key
i f (T. r i gh t == [])

n = [] ;
else

n = findNode (T. r i gh t , key) ;
end

end

end

28

For example, consider the binary search tree in Figure 5.9. For finding the node with key
3 the search proceeds from the root to its left child (4) and from there to the left child (1),
where the search terminates returning [] as the key is not found. Trees that have a small
difference between the lowest and highest levels of leafs are said to be balanced, and nodes
with certain keys can be found quickly in such trees. For example, finding any node in
the tree in Figure 5.9 takes maximum 3 comparison operations - a lot less than searching
in a linear list (7). For balanced trees, the complexity to find a certain node is O(log n).

6

4 7

1 5 8

Figure 5.9: A 3-level binary search tree.

5.4 Heap

Heap is a special type of binary tree that is complete - that is, each level of height x except
the last one has exactly 2x nodes (root has 1, first level 2, second 4, ...). In addition heaps
fulfill two additional properties: (1) the last level of the tree is filled from left to right, i.e.,
there can be empty slots only on the right side of the last node in the last level, and (2)
the key of each node in the heap is maximum the key of the parent (i.e. 11 cannot be the
child of 10). The second condition is called the heap property, and it distinguishes heaps
from other types of trees. An example heap is shown in Figure 5.10. Note that heaps are
not binary search trees, as the left child of a node can have larger value than the right
child.

Heaps support the operation of retrieving the largest (or alternatively the smallest, these
are called max- and min-heaps, respectively) value in O(1) time, as it is always the root
node. As heaps are complete binary trees, they can be stored in an array so that the ith

element of jth level is located in the index

2j + (i − 1)

For example, the heap of Figure 5.10 can be stored in an array as

9 7 5 6 4 1

The array representation is useful as it allows us to also find the parent of a node in O(1)
time without explicitly storing in each node a reference to its parent. The parent of node

29

9

7 5

6 4 1

Figure 5.10: A heap.

n is in index ⌊n⌋, the left child is in index 2n, and the right one in index 2n + 1. Knowing
this we can construct shortcut functions for obtaining the correct indices:

function l = l e f t (n)
l = 2∗n ;

end

function r = r i gh t (n)
r = 2∗n + 1 ;

end

function p = parent (n)
p = f loor (n / 2) ;

end

When a node is added to the heap, it always becomes the rightmost node of the last layer
(in case it still has space), or the first node of a new layer (in case the last layer is full).
This assures that the heap continues being a complete tree. For example, adding a node
10 to the heap of Figure 5.10 results in what is seen in Figure 5.11 (a). Now the heap
property is violated, however, and the heap needs to be corrected by moving the largest
value up through the heap. The function for this is:

function H = heap In se r t (H, key)
i = length (H) + 1 ;
while (i > 1 & H(parent (i)) < key)

H(i) = H(parent (i)) ;
i = parent (i) ;

end

H(i) = key ;
end

The insertion of 10 starts with heapInsert(H, 10): 10 is added as the last node in

30

6

9

4 1

57

(a)

10 6

9

4 1

107

(b)

5

6

10

4 1

97

(c)

5

Figure 5.11: heapInsert adding node with key 10. First the node is added, and then it
is iteratively “bubbled” to its correct position.

the heap (Fig. 5.11 (a)). In the first iteration of while loop, as 10 is larger than 5, 10
is replaced with 5 (Fig. 5.11 (b)). In the second iteration 10 is larger than 9 and 9 is
replaced to the location i is pointing at (right child of the root). The while loop ends, and
10 is placed at its correct location at the root. Note that there is no need to examine left
children of the nodes processed during the iterations as the heap property does not say
anything about the relation between the children, and as if the added node is larger than
its parent, it is then surely also larger than its sibling. For this reason the heapInsert is
of complexity O(log n).

Deletion of a node from the heap is always made by removing the top node – in this way
the heap implements priority queue semantics: nodes may be added in arbitrary order,
but when they are removed, the order is based on the key values; the largest node in the
heap comes out first. When a node is removed from the top, it is replaced with the last
node of the heap. This naturally leads to the heap property being violated. Let us remove
the root node from the heap presented in Figure 5.11 (c) and replace it with the last node.
This leads to situation depicted in in Figure 5.12 (a). Now to correct the heap, we take the
largest of its children (9) and swap the root (5) with it. This leads to the heap property
being restored from root to the left subtree. Then heapify is recursively performed on the
new location of 5 (Figure 5.12). As it is larger then both of its children, it also fulfills the
heap property and thus the whole heap H does and the algorithm can terminate. This
heapify function is:

31

64 1

97

(a)

5

64 1

9

7

(b)

5

Figure 5.12: Heapifying after replacing the root node with the last node.

function H = heap i f y (H, n , endIndex)
l a r g e s t = 0 ;
l = l e f t (n)
r = r i gh t (n)
i f (l <= endIndex && H(l) > H(n))

l a r g e s t = l ;
else

l a r g e s t = n ;
end

i f (r <= endIndex && H(r) > H(l a r g e s t))
l a r g e s t = r ;

end

i f (l a r g e s t != n)
temp = H(l a r g e s t) ;
H(l a r g e s t) = H(n) ;
H(n) = temp ;
H = heap i f y (H, l a r g e s t , endIndex) ;

end

end

and the full function for removing the root node from the heap:

function H = heapRemove(H)
max = H(length (H)) ;
H(1) = H(length (H)) ;
H(length (H)) = [] ;
h eap i f y (H, 1 , length (H)) ;

end

The heapify function takes O(log n) time as it performs maximum O(1) operations for
each level of the heap. heapRemove is of the same complexity as it performs only constant
amount of work in addition to calling heapify.

All the heap operations I presented run in time O(log n) - so relatively fast even for large
sizes of n. Heaps are very useful data structures as you often need to store elements
in a way that they are queued in order of the keys. For example, remember Dijkstra’s

32

algorithm from the first programming course? Its complexity can be improved by using
Fibonacci heaps that are a heap structure3.

6 Sorting & searching

“2 or more, use a for” (E.W. Dijkstra)

The heap data structure presented in the previous section has one important use I did not
yet discuss: sorting. For heap to be used for sorting, we have to first consider building a
heap from an array A of arbitrary integers. This can be achieved iteratively with:

function A = buildHeap (A)
s = f loor (length (A) / 2) ;
while (s > 0)

heap i f y (A, s , length (A)) ;
s = s − 1 ;

end

end

To see how buildHeap proceeds, consider building one from the array [2 3 1 7 4 6] (Fig-
ure 6.1).

A good asymptotic bound for buildHeap is not so easy to find. The while loop goes from
length(A) / 2 to 1, so n/2 iterations. However, the time taken by heapify at each iteration
varies according to the height of the currently considered tree. In an n-node heap there
are at most ⌈n/2h+1⌉ nodes of height h. The complexity of heapify when called with a
node of height h is O(h) (i.e. O(log n) for full heap, where h = log2 n). Then the total
cost of buildHeap is

⌊log2 n⌋
∑

h=0

⌈
n

2h+1
⌉O(h) = O

n

⌊log2 n⌋
∑

h=0

h

2h

The summation is equal to 2, so the running time is O(n). Now given that we have
constructed a heap from an unsorted array in linear time, let us repeatedly swap the root
(=the largest node) with the last one and fix the heap of one length shorter. In this way
the last element in the array will be the largest, the second last the second largest, etc, so
the array will be sorted in an increasing order. The code for this is:

3They are out of our scope, but if you are interested, see http://en.wikipedia.org/wiki/

Fibonacci_heap

33

http://en.wikipedia.org/wiki/Fibonacci_heap
http://en.wikipedia.org/wiki/Fibonacci_heap

4

2

7 6

13

Figure 6.1: Iterations of buildHeap when executed with [2 3 1 7 4 6].

34

function A = heapSort (A)
s = length (A) ;
while (s > 1) % u n t i l s == 2 , but t h i s i s a s a f e r cond i t i on

% swap A(1) and A(s)
tmp = A(1) ;
A(1) = A(s) ;
A(s) = tmp ;
A = heap i f y (A, 1 , s) ;
s = s − 1 ;

end

end

Execution of heapSort on the heap of Figure 6.1 is shown in Figure 6.2. Heapsort takes
O(n) time to build the heap, and heapSort does n-1 iterations in which each the function
heapify is executed that in turn takes O(log n) time. So the total complexity is O(n) +
O(n log n) = O(n log n). Note that heapsort, like insertion sort, does the sorting in place
and requires only a constant amount of additional memory.

6.1 Design of algorithms (incremental & divide-and-conquer)

The sorting algorithms I have presented until now, insertion sort and heapsort, implement
an incremental approach to sorting: the array is sorted iteratively so that the problem
size decreases by each iteration. The Strassen’s matrix multiplication algorithm applied
another kind of approach: dividing the problem into multiple subproblems and applying
the same division to these until a problem that is trivial to solve was reached. Then
the solution to the original problem was composed of these subproblem solutions. This
is called the divide-and-conquer approach, and algorithms applying it can sometimes be
surprisingly fast, as we will see in the following subsections. The term divide and conquer
comes from the way Caesar administered the roman empire by splitting the conquered
areas in smaller regions that could then be easier ruled than larger ones which might unite
and challenge the Romans.

6.2 Mergesort

Let us consider a divide-and-conquer approach for sorting an array. For this we first need
to recognize the trivial case: an array of length 1, as it is always necessarily sorted. Any
larger arrays we can divide in two subarrays of approximately the same size. By doing
this recursively we divide the original array to pieces of size 1 as is demonstrated by the
first 4 levels of Figure 6.3 (for sorting the array [38 27 43 3 9 82 10]). This is not yet too
innovative as we did not actually sort anything yet – we just divided the array in a layered
manner in atomic parts. The second part, that is the last three layers of Figure 6.3, does
the magic: after we have arrived at the trivial arrays of size 1, we combine them one layer
at a time so that each time the combined array is sorted, leading into having the original
array sorted in the end.

The procedure outlined above is called mergesort due to the second phase where the
subarrays are merged together. The full procedure for mergesort is:

35

2

1

3

6

7

4

Figure 6.2: Iterations of heapSort on heap [7 4 6 3 2 1].

36

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82

27 38 3 43 9 82

10

10

3 27 38 43 9 10 82

3 9 10 27 38 43 82

Figure 6.3: Mergesort on array [38 27 43 3 9 82 10]. (source: wikipedia)

function A = mergeSort (A)
i f (length (A) > 1) % i f not , i t ’ s our t r i v i a l case

middle = f loor (length (A) / 2) ;
l e f t L i s t = A(1 : middle) ;
r i g h t L i s t = A((middle +1): length (A)) ;
l e f t L i s t = mergeSort (l e f t L i s t) ;
r i g h t L i s t = mergeSort (r i g h t L i s t) ;
A = merge (l e f t L i s t , r i g h t L i s t) ;

end

end

and for this we need also a method for merging the two arrays:

37

function c = merge (a , b)
lena = length (a) ;
lenb = length (b) ;
c=zeros (1 , l ena+lenb) ;
inda = 1 ; % index to move a long vec tor ’ a ’
indb = 1 ; % index to move a long vec tor ’ b ’
indc = 1 ; % index to move a long vec tor ’ c ’

while ((inda <= lena) && (indb <= lenb))
i f a (inda) < b(indb)

c (indc) = a (inda) ;
inda = inda + 1 ;

else

c (indc) = b(indb) ;
indb = indb + 1 ;

end

indc = indc + 1 ;
end

% copy any remaining e lements o f the ’a ’ i n t o ’ c ’
while (inda <= lena)

c (indc) = a (inda) ;
indc = indc + 1 ;
inda = inda + 1 ;

end

% copy any remaining e lements o f the ’ b ’ i n t o ’ c ’
while (indb <= lenb)

c (indc) = b(indb) ;
indc = indc + 1 ;
indb = indb + 1 ;

end

end

The complexity of the full mergesort is easy to analyze. In each step, we make two
recursion steps each with an input half the size of the current one, so their total cost is
2T(n/2). In addition we have to merge the two lists. Now note that as we assume that
the lists we obtain from recursion are already ordered, merging them is easy and takes
only n operations. So the total cost is T(n) = 2T(n/2) + n, that evaluates as O(n log n).
An intuitive way of arriving to this upper bound is by looking at Figure 6.3: the amount
of levels for reaching the trivial sorting (arrays of length 1) is log2 n, and this is the same
amount that is taken for coming “backwards” from the recursion when in each level we
have to make O(n) operations for merging the arrays together. This gives the correct
complexity log n * O(n) = O(n log n).

Note that mergesort does not do the sorting in place, but instead requires extra memory
for holding the temporary lists: n for the first level, then n/2, n/4, ..., so the total
memory complexity for arriving until the end of the recursion is 2n = O(n). When coming
backwards from the recursion the parts already “used” do not have to be maintained in a
space-efficient implementation, so the overall memory complexity is O(n).

38

6.3 Quicksort

Mergesort is an O(n log n) complexity algorithm for sorting, and although it is in practice
faster than heapsort due to smaller coefficients hidden in the O-notation, it does not
sort in place. So heap and mergesort already provide us two sorting algorithms with low
asymptotic complexity and a trade-off between computational- and memory complexity.
However, the most used sorting algorithm is neither merge- nor heapsort, but quicksort.
The basic idea of quicksort is similar to mergesort: in each step, the array is divided in
two parts that are sorted recursively until a trivial case (an array of size 1) is reached.

The division phase in quicksort is different from that of mergesort: instead of splitting the
array in two approximately equal sized subarrays, the first element of the array is chosen
as the pivot, and the array is partitioned so that the elements left from the pivot will be
smaller or equal to the pivot, and all the elements to its right larger than the pivot. The
partitioning is done iteratively by growing these two partitions starting from the first and
the last indices, respectively.

The complete quicksort is:

% Sort array A from index p to index r
function A = quickSort (A, p , r)

i f (p < r)
[A, q] = p a r t i t i o n (A, p , r) ;
A = quickSort (A, p , q) ;
A = quickSort (A, q+1, r) ;

end

and the required partition method:

39

% P ar t i t i on array A from i n d i c e s p to r (i n c l u s i v e) so ,
% t ha t each A[p . . . q] i s < A[q +1. . . r]
function [A, q] = p a r t i t i o n (A, p , r)

x = A[p] ;
i = p−1;
j = r +1;
while (i < j)

done = f a l s e ;
while (! done)

j = j −1;
i f (A(j) > x)

done = true ;
end

end

done = f a l s e ;
while (! done)

i = i +1;
i f (A(i) < x)

done = true ;
end

end

i f (i < j)
% swap A(i) and A(j)
temp = A(i) ;
A(i) = A(j) ;
A(j) = temp ;

end

end

q = j ;
end

As an example, consider partitioning the array [3 7 8 5 2 1] as shown in Figure 6.4. The
sorting starts by choosing the first element (3) as the pivot. Then the partitions on the
left and right ends of the array are grown until an element is found from the left side that
is ≥ 3, and from the right size that is ≤ 3. These are 3 (the pivot) and 1, respectively,
and they are swapped. Then the indices i and j move again to grow the partitions, and
stop after 1 step - and these are then swapped. In third iteration j passes over i, so now
the array is partitioned: elements [1:2] are smaller than the pivot (3), and elements [3:6]
are equal or larger than the pivot. Now we can recursively sort again these subarrays.

The complexity of quicksort depends heavily on the partitioning: the worst case happens
when in each recursion step the largest element is chosen as the pivot, as then the parti-
tioning becomes extremely unbalanced: left side will have n-1 elements and the right side
only one (the pivot). Now if in the next recursion step the largest element is chosen again
as the pivot, there are n-2 alements on the left side and one (the pivot) on the right side.
This continues until the trivial case (1 element) is reached, so the complete cost is

40

Figure 6.4: All steps of quicksort on [3 7 8 5 2 1].

T (n) = T (n − 1) + O(n)

=
n

∑

k=1

O(k)

= O(
n

∑

k=1

k)

= O(n2)

which is not better than insertion sort, and is worse then heap- and mergesort. As it has
O(n2) worse case complexity, why has quicksort been for decades the “de facto” sorting
algorithm? As the worst case performance is quite bad, what about the best case one?
In best case the partitioning in each recursion step results in the median element being
chosen as the pivot, which leads to the left and right partitions becoming approximately
equally large. In this way the complexity becomes:

T (n) = 2T (n/2) + O(n)

= O(n log2 n)

that is the same as for quick- and mergesort, though the underlying constants are smaller
and therefore quicksort is in practice often faster than merge- or heapsort. Still, the worse-
case complexity of O(n2) is not making quicksort a too attractive sorting algorithm for

41

us. The worse case happens with already sorted lists which can be quite often if the input
comes from a real-life process (e.g. sorting customers according to their ID numbers). But
what if we can guarantee some semi-balanced partitioning? That is, if for example in each
partitioning step the array gets split 9-to-1? Then the complexity becomes

T (n) = T (9n/10) + T (n/10) + n

= O(n log10/9 n)

= O(n log n)

as the base of the logarithm does not affect the asymptotic running time. Similarly, a 99-
to-1 split yields O(n log n) complexity, so on average quicksort performs as good as merge-
and heapsort. The problem is still that sometimes the worse case scenario happens. A way
out from this is by using a non-deterministic modification of the algorithm and in each
recursion step before the partitioning to swap a random element of the array with the first
one, and use the new first element as the pivot. In this way we get an expected running time
of O(n log n) with a very high probability for any input. Analysis of the randomized version
is more complicated and out of our scope, but in practice most quicksort implementations
use its randomized version with the following modified partitioning algorithm:

function A = randomizedPart i t ion (A, p , r)
i = p + (round(rand (1) ∗ (r−p))) ;
temp = A(p) ;
A(p) = A(i) ;
A(i) = temp ;
A = p a r t i t i o n (A, p , r) ;

end

6.4 Binary search

Now that we know multiple ways to sort an array, let us consider finding elements from
the array. In Section 5.3 I introduced binary search trees, and when we discussed heaps,
we saw that they were representable with arrays. This is true also of trees, although
representing them with dynamic structures is most of the time more suitable than an
array representation. But let us now consider how to represent as a binary search tree a
sorted array such as:

1 4 5 6 7 8

There are multiple ways to represent it, but recall that for minimal search cost the tree
should be balanced: the difference with the lowest and highest levels of leaf nodes should
be minimized. We can achieve this with the given array by taking the medium node as
the root, elements left of it as its left subtree and elements to the right as its right subtree.
We repeat the same procedure recursively for the left- and right subtrees, and end up with
the tree in Figure 5.9. Now that the array is represented as a binary search tree, writing
a search procedure is trivial, and any element can be found in O(log n) time.

42

This shows us that data structures are often only different ways of looking at a problem,
but this different view can lead to new ways at approaching the problem, which can
enable invention of clearer and/or more efficient algorithms. In the end, the main goals
in programming are efficiency of the computation and simplicity of the solution. Most of
the time these two goals are aligned. As T. Hoare put it:

“There are two ways of constructing a software design: One way is to make it
so simple that there are obviously no deficiencies, and the other way is to make
it so complicated that there are no obvious deficiencies. The first method is
far more difficult.”

Acknowledgements and further reading

Although most of these lecture notes are written roughly from my own memory, I have
complemented widely with existing literature. If you want to learn more about complexity
analysis and algorithm design, I recommend Leicerson, Cormen, and Rivest: Introduction
to Algorithms (MIT Press). For a comprehensive, entertaining and practical introduction
to everything you need to know about programming, see Knuth: The Art Of Computer
Programming (vols 1-4A, Addison-Wesley). Some inspiration on matrices I got from Goulb
and van Loan: Matrix Computations (The Johns Hopkins University Press). I also ac-
knowledge the countless lecture notes, slides, and wiki entries I encountered in the internet
while writing this - my gratitude goes to their authors for making them freely available.

Although being modest in size, I’m sure these lecture notes contain countless errors. As
Linus Torvalds said, “given enough eyeballs, all bugs are shallow”. I would be extremely
grateful for the readers to report any errors found, whether they are on contents, writing
style or spelling, by email to ln-bugs@smaa.fi.

43

	Introduction
	Recall of Introduction to Programming course contents
	Programming paradigms
	Scripting languages
	Introduction to types

	Computing
	Numerical representation
	Computational complexity

	Memory organization
	Matrix representations
	Matrix multiplication

	Program correctness
	Pre- and post-conditions
	Halting problem
	Loop termination & invariants

	Data structures
	Stacks and Queues
	Linked list
	Trees
	Heap

	Sorting & searching
	Design of algorithms (incremental & divide-and-conquer)
	Mergesort
	Quicksort
	Binary search

