Programming (Econometrics)

Lecture 6: Nonlinear data structures

Tommi Tervonen

Econometric Institute, Erasmus School of Economics

/6'/“% ,,,,,,,,,,,,,,

Level O
Ancestor of 5
Level 1 e
Sibling of 9
Parent of 1
Level 2 9 0
Child of 3
Level 3

Descendant of 9
e Leaf

Trees: definition and implementation in Matlab

empty T is a tree
if T is not empty, a T has exactly one node designated as the

root(T)
the remaining nodes (T — root(T)) of a tree are partitioned
into m disjoint sets Ti,..., T,. Each of these are in turn a

tree, and are called subtrees of T.

Tree arity m defines max amount of subtrees (m =1 — linked list,
m = 2 — binary tree)

classdef treeNode < handle
properties
key
left
right
end

end /{MM

a—bx(c/d+e/f)

Example: tree traversal schemes; inorder, preorder and postorder

Binary search trees (BST)

BST search time / balanced case

m Each level: 1 comparison — 1/2 remaining nodes “discarded”

m Find complexity: O(log, n)

/6'/“% ,,,,,,,,,,,,,,

O
Q
®
®

/6'/“% ,,,,,,,,,,,,,,

BST operation complexity

Insert: O(n) (can be lower in balanced case)

Delete current node: O(1)

Search / balanced case: O(log n)

Search / unbalanced case: O(n)

/6'/“% ,,,,,,,,,,,,,,

m Balanced tree: every level of depth x (except last) has exactly
2% nodes

m Heap property: the key of each node is maximum that of its
parent

/6'/“4 ,,,,,,,,,,,,,,

Heap as an array

ith element of j level is located in the index 2/ + (i — 1)

/6'/“% ,,,,,,,,,,,,,,

Constructing a heap

When inserting a new node, it becomes:
m Last node of the last layer, if there is space
m First node of a new layer (depth increases by 1)

= possible violation of the heap property

/6'/“4 ,,,,,,,,,,,,,,

(c)

Complexity?

Deleting from the heap

m Only the root node can be deleted

= priority queue semantics that is very useful in various
cases (e.g. queueing elements that some have always priority
over others)

m Elegant data structure with many applications, e.g. Dijkstra’s
shortest path algorithm and Heapsort

/6'/“4 ,,,,,,,,,,,,,,

Deleting from the heap

The root node is deleted and replaced with the last node
— heap balanced, but heap property violated

— heapify(root)

function H = heapify (H, n, endindex)
largest = 0;
| = left(n);
r = right(n);
if (| <= endIndex && H(1) > H(n))
largest = |;
else
largest = n;
end
if (r <= endIndex && H(r) > H(largest))
largest = r;
end
if (largest != n)
H = swap(H, largest, n); % pseudo—code
H = heapify(H, largest, endlndex);
end
end

Complexity of heap operations

m Insert/delete: O(log n)
m Search max: O(1)

/62'/“4 ,,,,,,,,,,,,,,

Step 1: turning an arbitrary array into a heap

function A = buildHeap (A)
s = floor(length(A)/2);
while (s > 0)

A = heapify (A, s, length(A));
s =s — 1;

end
end

Let's heapsort [23 17 4 6]

/6'/“4 ,,,,,,,,,,,,,,

\2\3\1\7\4M \2\3\6\7\4\1

""""""

; ; eeeeeeeeeeeeee

\2\7\6\3\4\1\\7\2\6\3\4m
@D/
@ ®

‘7‘4‘6‘3‘2‘1‘

Complexity of buildHeap

function A = buildHeap (A)
s = floor(length(A)/2);
while (s > 0)

A = heapify (A, s,
s =s — 1;
end
end

length (A));

Assuming procedures (which we do not have in Matlab):
m n/2 iterations of while-loop

m n-node heap has at most [n/2"*1] nodes of height h
m heapify with heap of height his O(h)

log, n n o
= le;:%f J|72h-¢—1-|0(h) =0 (n 1-7:%2 J%)

O(n2) = O(n)

/6'/“4 ,,,,,,,,,,,,,,

Full heapsort

function A = heapSort(A)
s = length(A);
% until s = 2, but this
while (s > 1)
% pseudo—code
A = swap(A, 1, s);
A = heapify (A, 1, s);
s =s — 1;

is a safer condition

/6'/“4 ,,,,,,,,,,,,,,

/ heapify(A,
_—

oe

RONOONENONO©)

‘ : ‘ : ‘ ! ‘

‘ ° ‘ ’ ‘ ‘ ’ ‘ : ‘ ! ‘ ¢ ‘ ° ‘

‘ ! ‘ : ‘ ’ ‘ ¢ ‘ ¢ ‘ ! ‘ ‘ : ‘ ! ‘ ’ ‘ ¢ ‘ ¢ ‘ ! ‘

‘ ! ‘ : ‘ : ‘ ¢ ‘ ¢ ‘ 7 ‘

Complexity of heapsort

Initial build heap: O(n)

heapSort: n iterations of heapify, each O(log n)

Total: O(n) + O(nlogn) = O(nlog n)

m And does the sorting in place!

/6'/“% ,,,,,,,,,,,,,,

