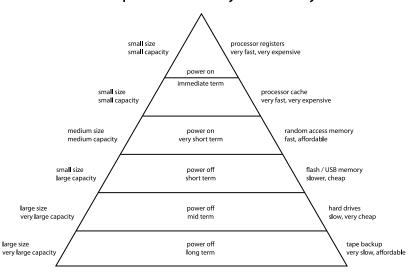
Programming (Econometrics)

Lecture 3: Memory organization

Tommi Tervonen

Econometric Institute, Erasmus School of Economics

Computer Memory Hierarchy



Memory organization

- Local variables such as loop counters can possibly be stored in registers
- All larger data structures have to be allocated to the main memory
- The random access memory is linear and addressed using integers pointing out the location (e.g. 0x400345CF)
- 32 bit adrressing = max 4Gb of memory

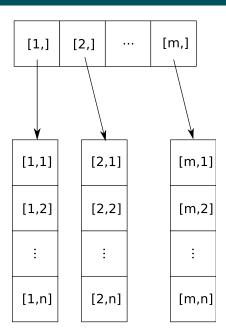
Matrices in Matlab

■ Matrices are included in Matlab as a built-in data type

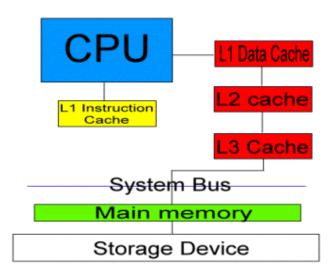
```
a = [3, 4];
b = '1';
c = a*b; % what's c now?
```

■ How to represent $m \times n$ matrices?

Matrix representations: naive



CPU caches



Matrix representations: efficient

■ Memory is linear, so store the element [a, b] in index [(a-1)*n+b]

1	2		n	(n+1)	(n+2)		(m*n)
---	---	--	---	-------	-------	--	-------

- Row-major representation; in column-major one [a, b] is in [(b-1)*m+a]
- In most programming languages the array indices start from 0 and the formulas are simpler

Row- and column-major representations: an example

$$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right]$$

- As row-major: [1 2 3 4 5 6]
- As column-major: [1 4 2 5 3 6]

Special matrices: sparse

■ If the matrix if *sparse*, i.e. it contains only a few elements, it is more efficient to store only the non-zero elements

■ E.g.

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{bmatrix}$$

■ Can be represented with ([3, 4, 2], [5, 1, 1])

Special matrices: diagonal and identity

$$\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]$$

■ Can be represented with [1, 3, 2, 7, 4]

$$\left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]$$

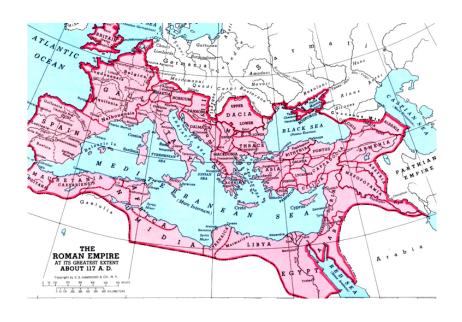
 $\blacksquare = I_5$ and can be represented with a single integer 5

Cafus ERASMUS UNIVERSITEIT ROTTERDAM

Matrix multiplication: naive

```
function C = multiply(A, B)
  C = zeros(rows(A), columns(B));
  for (i=1:rows(A))
    for (i=1:columns(B))
      s = 0:
      for (k=1:columns(A))
        s = s + A(i, k) * B(k, i);
      end
      C(i, j) = s;
    end
  end
end
```

Complexity?



Matrix multiplication: divide-and-conquer

- Assume that we are multiplying $n \times n$ matrices, where n is a power of 2
- Express C = AB as

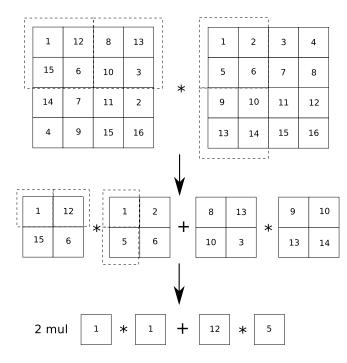
$$\left[\begin{array}{cc} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{array}\right] = \left[\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array}\right] \left[\begin{array}{cc} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{array}\right]$$

that comes down to computing

$$C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$$

 $C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{1,2}$
 $C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1}$
 $C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}$

■ Proceed recursively until you multiply matrices of max size 1 × 1



Complexity of divide-and-conquer multiplication

$$T(n) = 8T(n/2) + n^{2}$$

$$= n^{2} + 8((n/2)^{2} + 8T(n/4))$$

$$= n^{2} + 8((n/2)^{2} + 8((n/4)^{2} + 8T(n/16)))$$

$$= n^{2} + 2n^{2} + 4n^{2} + 8T(n/16))$$

Complexity of divide-and-conquer multiplication

$$T(n) = 8T(n/2) + n^{2}$$

$$= n^{2} + 8((n/2)^{2} + 8T(n/4))$$

$$= n^{2} + 8((n/2)^{2} + 8((n/4)^{2} + 8T(n/16)))$$

$$= n^{2} + 2n^{2} + 4n^{2} + 8T(n/16)))$$

 i^{th} term in the series is $2^{i-1}n^2$

Complexity of divide-and-conquer multiplication

$$T(n) = 8T(n/2) + n^{2}$$

$$= n^{2} + 8((n/2)^{2} + 8T(n/4))$$

$$= n^{2} + 8((n/2)^{2} + 8((n/4)^{2} + 8T(n/16)))$$

$$= n^{2} + 2n^{2} + 4n^{2} + 8T(n/16)))$$

$$i^{th} \text{ term in the series is } 2^{i-1}n^{2}$$

$$T(n) = n^{2} + 2n^{2} + 4n^{2} + \dots + 2^{\log_{2}n}O(1)$$

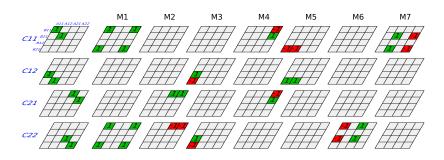
$$= n^{2} \sum_{i=0}^{\log_{2}n} 2^{i} + O(n^{\log_{2}2})$$

$$= n^{2} \frac{2^{\log_{2}(n+1)} - 1}{2 - 1} + O(n)$$

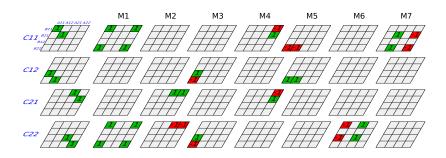
$$\leq n^{2}O(2^{\log_{2}n}) + O(n) = n^{2}O(n) + O(n)$$

$$= O(n^{3})$$

Strassen's idea



Strassen's idea



Now we only need to do 7 multiplications, so the complexity becomes

$$T(n) = 7T(n/2) + O(n^2)$$

= $O(n^{\log_2 7}) \approx O(n^{2.81})$

Static data structures

- Matrices and arrays are static data structures in the sense that although accessing an arbitrary element is efficient, adding an element is not
- Example: add an element into an array

Complexity of operations with matrices and arrays

For *n* elements

- Add element: O(n)
- Random access: O(1)
- Delete element: O(n)

For $n \times n$ matrices:

- Multiplication: O(n³) (?)
- Inversion: as multiplication
- Determinant: O(n³) with LU decomposition

