
Programming (Econometrics)
Lecture 3: Memory organization

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

Memory organization

Local variables such as loop counters can possibly be stored in
registers

All larger data structures have to be allocated to the main
memory

The random access memory is linear and addressed using
integers pointing out the location (e.g. 0x400345CF)

32 bit adrressing = max 4Gb of memory

Matrices in Matlab

Matrices are included in Matlab as a built-in data type

a = [3 , 4] ;
b = ’ 1 ’ ;
c = a∗b ; % what ’ s c now?

How to represent m × n matrices?

Matrix representations: naive

CPU caches

Matrix representations: efficient

Memory is linear, so store the element [a, b] in index
[(a− 1) ∗ n + b]

Row-major representation; in column-major one [a, b] is in
[(b − 1) ∗m + a]

In most programming languages the array indices start from 0
and the formulas are simpler

Row- and column-major representations: an example

[
1 2 3
4 5 6

]

As row-major: [1 2 3 4 5 6]

As column-major: [1 4 2 5 3 6]

Special matrices: sparse

If the matrix if sparse, i.e. it contains only a few elements, it
is more efficient to store only the non-zero elements

E.g. 
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 0
1 0 0 0 0


Can be represented with ([3, 4, 2], [5, 1, 1])

Special matrices: diagonal and identity


1 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 7 0
0 0 0 0 4


Can be represented with [1, 3, 2, 7, 4]

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


= I5 and can be represented with a single integer 5

Matrix multiplication: naive

funct ion C = m u l t i p l y (A, B)
C = zeros (rows (A) , columns (B)) ;
f o r (i =1: rows (A))

f o r (j =1: columns (B))
s = 0 ;
f o r (k=1: columns (A))

s = s + A(i , k) ∗ B(k , j) ;
end
C(i , j) = s ;

end
end

end

Complexity?

Matrix multiplication: divide-and-conquer

Assume that we are multiplying n × n matrices, where n is a
power of 2

Express C = AB as[
C1,1 C1,2

C2,1 C2,2

]
=

[
A1,1 A1,2

A2,1 A2,2

] [
B1,1 B1,2

B2,1 B2,2

]
that comes down to computing

C1,1 =A1,1B1,1 + A1,2B2,1

C1,2 =A1,1B1,2 + A1,2B1,2

C2,1 =A2,1B1,1 + A2,2B2,1

C2,2 =A2,1B1,2 + A2,2B2,2

Proceed recursively until you multiply matrices of max size
1 × 1

Complexity of divide-and-conquer multiplication

T (n) = 8T (n/2) + n2

= n2 + 8((n/2)2 + 8T (n/4))

= n2 + 8((n/2)2 + 8((n/4)2 + 8T (n/16)))

= n2 + 2n2 + 4n2 + 8T (n/16)))

i th term in the series is 2i−1n2

T (n) = n2 + 2n2 + 4n2 + · · · + 2log2 nO(1)

= n2
log2 n∑
i=0

2i + O(nlog2 2)

= n2
2log2(n+1) − 1

2 − 1
+ O(n)

≤ n2O(2log2 n) + O(n) = n2O(n) + O(n)

= O(n3)

Strassen’s idea

Now we only need to do 7 multiplications, so the complexity
becomes

T (n) = 7T (n/2) + O(n2)

= O(nlog2 7) ≈ O(n2.81)

Static data structures

Matrices and arrays are static data structures in the sense
that although accessing an arbitrary element is efficient,
adding an element is not

Example: add an element into an array

Complexity of operations with matrices and arrays

For n elements

Add element: O(n)

Random access: O(1)

Delete element: O(n)

For n × n matrices:

Multiplication: O(n3) (?)

Inversion: as multiplication

Determinant: O(n3) with LU decomposition

