Programmeren (Ectrie) Lecture 2: Computing

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

What's the difference?

- Enable to write, compile, and run code on the same machine
- Implement von Neumann architecture

Numerical representation

- Computers have instruction sets (e.g. MOV, MUL, ADD)
- Each instruction has a binary opcode
- Numbers (integers and reals) are also just sequences of bits
- Standard computers operate with a certain number of bits (32/64)
- We give *semantics* to the sequences of bits to represent integers, reals, characters, opcodes, ...

Floating point numbers

- Integers are within a certain range (e.g. standard 32-bit: [-2³¹, 2³¹ - 1]) that contains all values
- Reals are represented as *floating point numbers* with a fixed base *b*, signed fraction *f*, and exponent *e* as:

$$(e,f)=f\times b^e$$

• E.g. floating decimal (b = 10) with 8 digits can represent Plank's constant (6.6261×10^{-27}) as

$$(-26, +.66261000)$$

- We still need to choose b and bit sizes for e and f
- Most processors support IEEE 754 double precision (64 bit) floating point standard with b = 2:

Java's double and Matlab's numbers are 64 bit floats

Implications:

- \blacksquare The decimal point is floating, and precision of the fraction is $53\log_{10}2\approx 15.955$

Problems with floating point numbers (1)

Operations on floating point numbers performed on computers are neither associative nor distributive, that is,

$$a + (b + c) \neq (a + b) + c$$
, for many a, b, c
$$a * (b + c) \neq (a * b) + (a * c)$$
, for many a, b, c

when a, b, and c are floating point numbers. For example, consider

a = 0.42b = -0.5c = 0.08

now, with IEEE 754 double-precision binary floats, we get

$$(a + b) + c = -1.3878 \times 10^{-17}$$

 $a + (b + c) = 0$

- So not all numbers can be represented exactly with IEEE 754 floating point numbers
- The interval between numbers that can be represented depends on the magnitude of the number
- Floating point numbers can be thought of representing an interval around the given value (e.g. 0.42 is actually [0.42 ε₁, 0.42 + ε₂])

The limited amount of bits used to store the numbers can cause under- and overflows:

```
1.2345678 + 1.7654321 = 3
```

due to the inherent imprecision of the floating point representation.

 \Rightarrow never compare results against an exact value, rather check whether they are within a threshold ϵ :

 $1.2345678 + 1.7654321 - 3 \leq \epsilon$

Accuracy of floating point numbers highly depends on the operations performed:

- multiplication is less precise than addition
- repeated application of addition/substraction can result in arbitrarily large errors if incorrect rounding scheme is used (though in practice it isn't)

If you need very high precision floats, don't use Matlab

Computational complexity

- The only two resources for algorithms are computation time and memory
- Computational complexity refers to their use how complex is the algorithm given an input of size n
- Complexity theory forms the basis for all computational sciences
- Complexity can be analyzed by counting the amount of resources used
- Example: adding together two integers 12345 and 53766

2 3 1 5 4

Sort in the way card game players sort their hands

Sort in the way card game players sort their hands

```
function [a] = insertionSort(a)
  for j=2:length(a)
    key = a(i);
    i = i - 1;
    while i > 0 && a(i) > key
      a(i+1) = a(i);
      i = i - 1;
    end
  a(i+1) = key
  end
end
```


With romanian folk dance

Assumptions:

- We are computing with a single-processor random access machine
- No parallel processing
- Instructions are processed sequentially
- The machine has unlimited memory

Insertion sort: analysis

- Memory: a constant amount of additional memory (i.e. for the temporary variables) is used - insertion sort does the sorting *in place*
- Running time: count the amount of primitive operations performed
 - Primitive operations = arithmetic operations, comparisons, assignments, etc
 - Exact number of CPU cycles / operation depends on compiler and hardware
 - Analyze on more abstract level by counting the amount computation steps

1 function [a] = insertionSort(a)
2 for
$$j=2:$$
length(a)
3 key = a(j);
4 i = j-1;
5 while i > 0 && a(i) > key
6 a(i+1) = a(i);
7 i = i-1;
8 end
9 a(i+1) = key
10 end
11 end

- Amount of times each line is executed
- c_i : the cost of executing line *i*
- t_j the amount of times the while loop test on line 5 is executed

function [a] = insertionSort(a) 1 for j=2:length(a) 2 3 key = a(i); 4 i = i - 1;5 while i > 0 & a(i) > key6 a(i+1) = a(i);7 i = i - 1: 8 end 9 a(i+1) = key

- 10 **end**
- 11 end

Line	2	3	4	5	6	7	9
Cost	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> 4	<i>C</i> 5	<i>c</i> ₆	C7	<i>C</i> 9
Times	n	n-1	n-1	$\sum_{j=2}^n t_j$	$\sum_{j=2}^n (t_j-1)$	$\sum_{j=2}^n (t_j-1)$	n-1

Line	2	3	4	5	6	7	9
Cost	<i>c</i> ₂	<i>C</i> 3	<i>C</i> 4	<i>C</i> 5	<i>c</i> ₆	C7	<i>C</i> 9
Times	n	n-1	n-1	$\sum_{j=2}^{n} t_j$	$\sum_{j=2}^n (t_j-1)$	$\sum_{j=2}^n (t_j-1)$	n-1

$$T(n) = c_2 n + c_3(n-1) + c_4(n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_9(n-1)$$

- **function** [a] = insertionSort(a) 1 2 for j=2:length(a) 3 key = a(i); 4 i = i - 1;5 while i > 0 && a(i) > key6 a(i+1) = a(i);7 i = i - 1: 8 end 9 a(i+1) = key10 end end 11
 - The running time depends on size of the input *n* and times the inner loop is executed t_i

•
$$a(i) \leq a(j) \ \forall i < j, \ i, j \in \{1, \dots, n\} \Rightarrow t_j = 1 \ \forall j \in \{1, \dots, n\}$$

$$T(n) = c_2 n + c_3(n-1) + c_4(n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_9(n-1)$$

 $\text{if } a(i) \leq a(j) \; \forall i < j, \; i, j \in \{1, \dots, n\} \Rightarrow t_j = 1 \; \forall j \in \{1, \dots, n\}$

$$T(n) = c_2 n + c_3(n-1) + c_4(n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_9(n-1)$$

if
$$a(i) \le a(j) \ \forall i < j, \ i, j \in \{1, \dots, n\} \Rightarrow t_j = 1 \ \forall j \in \{1, \dots, n\}$$

$$\Rightarrow T(n) = c_2 n + c_3 (n-1) + c_4 (n-1) + c_5 (n-1) + c_9 (n-1)$$

$$= (c_2 + c_3 + c_4 + c_5 + c_9)n - (c_2 + c_4 + c_5 + c_9)$$

Т

$$egin{aligned} f(n) = & c_2 n + c_3 (n-1) + c_4 (n-1) \ & + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j-1) \ & + c_7 \sum_{j=2}^n (t_j-1) + c_9 (n-1) \end{aligned}$$

if
$$a(i) \le a(j) \ \forall i < j, \ i, j \in \{1, \dots, n\} \Rightarrow t_j = 1 \ \forall j \in \{1, \dots, n\}$$

$$\Rightarrow T(n) = c_2 n + c_3 (n-1) + c_4 (n-1) + c_5 (n-1) + c_9 (n-1)$$

$$= (c_2 + c_3 + c_4 + c_5 + c_9)n - (c_2 + c_4 + c_5 + c_9)$$

replace $c_2 + c_3 + c_4 + c_5 + c_9 = a$ and $c_2 + c_4 + c_5 + c_9 = b$

$$T(n) = c_2 n + c_3 (n - 1) + c_4 (n - 1)$$

+ $c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1)$
+ $c_7 \sum_{j=2}^n (t_j - 1) + c_9 (n - 1)$

if
$$a(i) \le a(j) \ \forall i < j, \ i, j \in \{1, \dots, n\} \Rightarrow t_j = 1 \ \forall j \in \{1, \dots, n\}$$

$$\Rightarrow T(n) = c_2 n + c_3 (n-1) + c_4 (n-1) + c_5 (n-1) + c_9 (n-1)$$

$$= (c_2 + c_3 + c_4 + c_5 + c_9)n - (c_2 + c_4 + c_5 + c_9)$$

replace $c_2 + c_3 + c_4 + c_5 + c_9 = a$ and $c_2 + c_4 + c_5 + c_9 = b$

$$\Rightarrow T(n) = an + b$$

	C .
1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 **function** [a] = insertionSort(a) for j=2:length(a) 2 3 key = a(i); 4 i = i - 1;5 while i > 0 & a(i) > key6 a(i+1) = a(i);7 i = i - 1: 8 end 9 a(i+1) = key10 end 11 end

If
$$a(i) > a(j) \ \forall i < j, \ i, j \in \{1, \dots, n\}$$

⇒ in every iteration of the while loop the current element a(i)must be compared with each of the elements in the already sorted subarray $a(1), \ldots, a(i-1)$, so $t_j = j \forall j \in \{2, \ldots, n\}$

$$T(n) = c_2 n + c_3 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j$$

$$+ c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_0(n-1)$$

note that

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \text{ and } \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_2 n + c_3 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j$$

$$+ c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_0(n-1)$$

note that

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \text{ and } \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$\Rightarrow T(n) = c_2 n + c_3 (n-1) + c_4 (n-1) + c_5 (\frac{n(n+1)}{2} - 1) + (c_6 + c_7) (\frac{n(n-1)}{2}) + c_9 (n-1) = (\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}) n^2 + (c_2 + c_3 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_9) n - (c_3 + c_4 + c_5 + c_9)$$

Worst-case running time

$$T(n) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + (c_2 + c_3 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_9)n - (c_3 + c_4 + c_5 + c_9)$$

replace sets of c_i 's with constants a, b, and c

Worst-case running time

$$T(n) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + (c_2 + c_3 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_9)n - (c_3 + c_4 + c_5 + c_9)$$

replace sets of c_i 's with constants a, b, and c

$$\Rightarrow T(n) = an^2 + bn + c$$

Insertion sort

- Sorts in place requires constant amount of memory not dependent on the input size
- Has linear best-case complexity
- Has quadratic worst-case complexity

Usually we are interested only in the worst-case complexity, as

- It gives us an upper-bound on how bad the algorithm can perform
- Worst-case occurs fairly often with some algorithms
- Worst-case can occur with extremely high probability when input is from real-life processes (e.g. sorting customers)
- Algorithms are executed often, so worst case happens almost surely sometime

Running times with a computer processing 10^9 ops/s

f(n)	10	100	1000	10 ⁴	10 ⁵	10 ⁶
n	10^{-8} s	10^{-7} s	10^{-6} s	10^{-5} s	10^{-4} s	10^{-3} s
n log n	10^{-8} s	$2.4 imes10^{-8} s$	$2.0 imes10^{-6} s$	$3.5 imes10^{-4} s$	0.1s	56s
n ²	10^{-7} s	10^{-5} s	10^{-3} s	0.1s	10s	17min
n^3	10^{-6} s	10^{-3} s	1s	17min	12d	32y
2 ⁿ	10^{-6} s	$4.0 imes10^{13}$ y	$3.3 imes10^{284}$ y			
<i>n</i> !	$3.6 imes10^{-3} s$	$3.0\times10^{141}\text{y}$				

Growth of functions

Typical Analysis Functions

Growth of functions

Typical Analysis Functions

Asymptotic complexity

- Exact analysis as we did before (with c_i's) is not meaningful only asymptotic complexity matters
- Given an input size *n* > *n*₀ , where *n*₀ is some constant value, how fast does the running time grow?
- The asymptotic behaviour of a function depends only on the highest order term, and not at all of the constants (the c's)

big-O notation

For asymptotic worst-case complexity, we use the big-O notation. Given a function g(n), the set of functions

 $O(g(n)) = \{f(n) : \exists c > 0, n_0 > 0 : 0 \le f(n) \le cg(n) \quad \forall n \ge n_0\}$

are asymptotically O-equivalent.

O(g(n)) is the asymptotical upper bound, that is not necessary tight

big-O

- For example, our previous quadratic complexity $an^2 + bn + c \in O(n^2)$, also $3n^2 \in O(n^2)$ and $mn^2 + nlogn \in O(n^2)$
- Common complexity classes
 - O(1)
 - O(n)
 - $O(n \log n)$
 - O(n²)
 - O(n³)
 - O(2ⁿ)

- Any problem with a known algorithm for solving it in polynomial time (O(g(n)) where g(n) is a polynomial) is called *tractable*
- Unfortunately many practical problems are intractable
- The most significant problem in mathematics: P=NP?