Programmeren (Ectrie)

Lecture 2: Computing

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

/6'/“% ,,,,,,,,,,,,,,

What's the difference?

Stored-program computers

m Enable to write, compile, and run code on the same
machine

m Implement von Neumann architecture

/6'/“% ,,,,,,,,,,,,,,

von Neumann architecture

Memory
Arithmetic
—| Logic
Control :
Unit || Ynit
Accumulator

N

Input Output

zfﬁmw ,,,,,,,,,

Numerical representation

m Computers have instruction sets (e.g. MOV, MUL, ADD)
m Each instruction has a binary opcode

m Numbers (integers and reals) are also just sequences of
bits

m Standard computers operate with a certain number of bits
(32/64)

m We give semantics to the sequences of bits to represent
integers, reals, characters, opcodes, ...

/6'/“4 ,,,,,,,,,,,,,,

Floating point numbers

m Integers are within a certain range (e.g. standard 32-bit:
[—231,231 — 1]) that contains all values

m Reals are represented as floating point numbers with a fixed
base b, signed fraction f, and exponent e as:

(e.f) = f x b°

m E.g. floating decimal (b = 10) with 8 digits can represent
Plank’s constant (6.6261 x 10727) as

(—26, +.66261000)

/6'/“4 ,,,,,,,,,,,,,,

|IEEE 754

m We still need to choose b and bit sizes for e and f

m Most processors support IEEE 754 double precision (64 bit)
floating point standard with b = 2:

exponent fraction
sign (11 bit) (52 bit)
|
I
o o o
63 52 0
value = (—1)&"(1+Z b_;27") x 2(e~1023)

m Java's double and Matlab’s numbers are 64 bit floats

/6'/“4 ,,,,,,,,,

|IEEE 754

exponent fraction
sign (11 bit) (52 bit)
|
I
o [6) o
63 52 0
Implications:

m The decimal point is floating, and precision of the fraction is
53log;p 2 ~ 15.955

= 23000000000000000000 ok

= 23000000000000000001 not

Problems with floating point numbers (1)

Operations on floating point numbers performed on computers are
neither associative nor distributive, that is,

a+ (b+c)# (a+ b)+ c, for many a, b, ¢
ax(b+c)#(axb)+ (axc), for many a, b, c

when a, b, and c are floating point numbers. For example, consider

a =0.42
b=-05
¢ =0.08

now, with IEEE 754 double-precision binary floats, we get

(a+b)+c=—1.3878 x 10/
a+(b+c)=0

/6'/“4 ,,,,,,,,,,,,,,

Problems with floating point numbers (1)

m So not all numbers can be represented exactly with IEEE 754
floating point numbers

m The interval between numbers that can be represented
depends on the magnitude of the number

m Floating point numbers can be thought of representing an
interval around the given value (e.g. 0.42 is actually
[0.42 —€1,0.42 + 62])

/6'/“4 ,,,,,,,,,,,,,,

Problems with floating point numbers (2)

The limited amount of bits used to store the numbers can cause
under- and overflows:

1.2345678 + 1.7654321 = 3

due to the inherent imprecision of the floating point representation.

= never compare results against an exact value, rather check
whether they are within a threshold e:

1.2345678 + 1.7654321 —3 < €

/6'/“4 ,,,,,,,,,,,,,,

Problems with floating point numbers (3)

Accuracy of floating point numbers highly depends on the
operations performed:

m multiplication is less precise than addition

m repeated application of addition/substraction can result in
arbitrarily large errors if incorrect rounding scheme is used
(though in practice it isn't)

If you need very high precision floats, don't use Matlab

/6'/“4 ,,,,,,,,,,,,,,

Computational complexity

m The only two resources for algorithms are computation time
and memory

m Computational complexity refers to their use - how complex is
the algorithm given an input of size n

m Complexity theory forms the basis for all computational
sciences

m Complexity can be analyzed by counting the amount of
resources used

m Example: adding together two integers 12345 and 53766

/6'/“4 ,,,,,,,,,,,,,,

Insertion sort

[2[3]t]5[4]

m Sort in the way card game players sort their hands

/6'/“% ,,,,,,,,,,,,,,

Insertion sort

[2[3]t]5[4]

m Sort in the way card game players sort their hands

function [a] = insertionSort(a)
for j=2:length(a)
key = a(j);
i = j-1;

while i > 0 && a(i) > key
a(i+1) = a(i);
i = i-1;
end
a(i+1) = key
end
end

/6'/“4 ,,,,,,,,,,,,,,

Insertion sort: example

With romanian folk dance

/6'/“% ,,,,,,,,,,,,,,

Insertion sort: analysis

Assumptions:

m We are computing with a single-processor random access
machine

m No parallel processing
m Instructions are processsed sequentially

m The machine has unlimited memory

/6'/“4 ,,,,,,,,,,,,,,

Insertion sort: analysis

m Memory: a constant amount of additional memory (i.e. for
the temporary variables) is used - insertion sort does the
sorting in place

m Running time: count the amount of primitive operations
performed
m Primitive operations = arithmetic operations,
comparisons, assignments, etc

m Exact number of CPU cycles / operation depends on
compiler and hardware

m Analyze on more abstract level by counting the amount

computation steps
/6“/“" ,,,,,,,,,,,,,,

function [a] = insertionSort(a)
for j=2:length(a)
key = a(j);
i = j—1;
while i > 0 && a(i) > key
a(i+1) = a(i);

i = 1i-1;
end
a(i+1) = key
end
end

m Amount of times each line is executed
m ¢;: the cost of executing line i

m t; the amount of times the while loop test on line 5 is executed

1 function [a] = insertionSort(a)

2 for j=2:length(a)

3 key = a(j);

4 i = -1,

5 while i > 0 && a(i) > key

6 a(i+1l) = a(i);

7 = 1i-1;

8 end

9 a(i+1) = key

10 end

11 end
| Line [2] 3 4 5 6 7 9
Cost | o c3 Cy Cs Co c7 Cy
Times | n | n—1|n—-1 th Z(tj—l) Z(tj—l) n—1

j=2 j=2 j=2

[Line [2] 3 [4 | 5 | 6 7 9
Cost | o c3 Cs Cs Co cy Co
Times | n | n—1|n—-1 th Z(tj—l) Z(tj—l) n—1

j=2 j=2 j=2

T(n)=con+c(n—1)+ c(n—1)

n n
+CSth+C6Z(tj_1)
j=2 j=2

function [a] = insertionSort(a)
for j=2:length(a)
key = a(j);
= -1,
while i > 0 && a(i) > key
a(i+1) = a(i);
i =i-1;
end
a(i+1) = key
end
end

m The running time depends on size of the input n and times
the inner loop is executed t;

ma(i)<a(j)Vi<j, i, je{l,....,n}=t=1Vje{l,...,n}

Best-case running time

T(n)=cn+c(n—1)+c(n—1)
n n
e urad (oo
+C7Z t;— 1)+ co(n— 1)

ifa(i) <a(j)Vi<y,i,je{l,....n}=t;=1Vjec{l,...,n}

Best-case running time

T(n) =con+ c3(n— 1)+ ca(n—1)
n n
+CSth+CGZ(tJ_
+C7Z ti—1)+ co(n—1)

ifa(i) <a(j)Vi<y,i,je{l,....n}=t;=1Vjec{l,...,n}

=T(n)=an+ca(n—1)+a(n—1)+c(n—1)+ co(n—1)
=(g+a+at+c+c)n—_(c+c+c+c)

/6'/“4 ,,,,,,,,,,,,,,

Best-case running time

T(n) =con+ c3(n— 1)+ ca(n—1)
n n
+CSth+CGZ(tJ_
+C7Z ti—1)+ co(n—1)

ifa(i) <a(j)Vi<y,i,je{l,....n}=t;=1Vjec{l,...,n}

=T(n)=an+ca(n—1)+a(n—1)+c(n—1)+ co(n—1)
=(g+a+at+c+c)n—_(c+c+c+c)

replace o+ 3+ g+ cs+cg=aand oo+ cag+cs+cg=0>b

/6'/“4 ,,,,,,,,,,,,,,

Best-case running time

T(n) =con+ c3(n— 1)+ ca(n—1)

n n
+CSth+CGZ(tJ_
+C7Z ti—1)+ co(n—1)

ifa(i) <a(j)Vi<y,i,je{l,....n}=t;=1Vjec{l,...,n}

=T(n)=an+ca(n—1)+a(n—1)+c(n—1)+ co(n—1)
=(g+a+at+c+c)n—_(c+c+c+c)

replace o+ 3+ g+ cs+cg=aand oo+ cag+cs+cg=0>b

= T(n)=an+b

/6'/“4 ,,,,,,,,,,,,,,

function [a] = insertionSort(a)
for j=2:length(a)
key = a(j);
i = j-1;
while i > 0 &% a(i) > key
a(i+l) = a(i);

i = i-1;
end
a(i+1) = key
end
end

If a(i) > a(j) Vi < j, i,j € {1,...,n}

= in every iteration of the while loop the current element a(i)
must be compared with each of the elements in the already sorted
subarray a(1),...,a(i —1),so tj=jVj€{2,...,n}

T(n)=cn+c(n—1)+c(n—1)+cs Zj

j=2
+ey ((—D+ad ((—1)+a(n-1)
j=2 j=2
note that
n(n+1) n(n—1)

Jj= > —1andz;(j—1):
J:

T(n)=cn+c(n—1)+c(n—1)+cs Zj

j=2
+C6ZJ_1+C7ZJ—1)+Co(n—1)
J2 J2
note that
n n
_n(n+1) . _n(n 1)
ZJ— —1and20_1)_ 5
j=2 =
n(n+1
= T(n) =con+ c3(n—1) + ca(n — 1)+C5((2) —1)
n(n—1
+ (¢ + C7)((2)) + co(n—1)
(5B % Ty 2
—(2+2+2)n
+(C+C+C—|——_E_ﬂ+c)n
2 3 4 5 > > 9

— (3 +ca+cs+ o)

Worst-case running time

C5 G | C7
T(n) :(5+§+5)n2
C C C
t(o+ratat 2 —2— T te)n

—(C3+C4+C5+Cg)

replace sets of ¢;'s with constants a, b, and ¢

/6'/“% ,,,,,,,,,,,,,,

Worst-case running time

T(n) :(E + b + i)n2

2 272
Ci C C
t(o+ratat 2 —2— T te)n

—(C3+C4+C5+Cg)
replace sets of ¢;'s with constants a, b, and ¢

= T(n)=an*+bn+c

/6'/“% ,,,,,,,,,,,,,,

Analysis: conclusions

Insertion sort

m Sorts in place - requires constant amount of memory not
dependent on the input size

m Has linear best-case complexity

m Has quadratic worst-case complexity

/6'/“4 ,,,,,,,,,,,,,,

Worst-case analyses

Usually we are interested only in the worst-case complexity, as

m It gives us an upper-bound on how bad the algorithm can
perform

m Worst-case occurs fairly often with some algorithms

m Worst-case can occur with extremely high probability when
input is from real-life processes (e.g. sorting customers)

m Algorithms are executed often, so worst case happens almost
surely sometime

/6'/“4 ,,,,,,,,,,,,,,

Running times with a computer processing 10° ops/s

f(n) 10 100 1000 10* 10° 10°
n 10~ % 107 7s 10~ % 10~ %s 107% 107 3s
nlogn 10 %s 24%x10% 20x10°% 35x10 % 0.1s 565
n” 10~ 7s 10 %s 10 3s 0.1s 10s 17min
n 1075 10735 1s 17min 12d 32y
2" 10 %s 4.0 x 108y 3.3 x 10%%y

n! 3.6 x 107 3s 3.0 x 10™y

Growth of functions

Typical Analysis Functions

28
' ' ' Constant
Logrithnic
Linear ——
n n
Quadratic
Cubic
15 xponential i
w
N
e
23
Ef
5 18 - J
-
=
=
7]
[
&
5 - J
a . . .
a 5 18 15 28

Input n

cCtr

Growth of functions

Typical Analysis Functions

' ' ' Constant ——
1488 Logrithnic ——
Linear ——
nlog n —
Quadratic
1208 Cubic — A
Exponential
1800 J 1
w
N
e
23
w &88 - 4
5
-
-
=
=
§ eee | _
&
488 - -
280 - b
a
a 5 18 15 28

Input n

cCtr

Asymptotic complexity

m Exact analysis as we did before (with ¢;'s) is not meaningful -
only asymptotic complexity matters

m Given an input size n > ng , where ng is some constant value,
how fast does the running time grow?

m The asymptotic behaviour of a function depends only on the
highest order term, and not at all of the constants (the c's)

czg(n)
cg(n)
fln)

: Gg(n)
1

!)

m n r‘r n

0 fim=0(g(n) o Afn=B(g(n)

(@) (b) /{'W ,,,,,,,,,,,,,,

big-O notation

m For asymptotic worst-case complexity, we use the big-O
notation. Given a function g(n), the set of functions

O(g(n)) ={f(n):3c>0,np>0: 0<f(n) <cg(n) Vn>np}

are asymptotically O-equivalent.

cg(n)

f(n)

L n
0 fin)=0(g(n)

6,9(n)

Gg(n)

: n
Mo fin)=O(g(n)

(b)

O(g(n)) is the
asymptotical upper
bound, that is not
necessary tight

/6'/“% ,,,,,,,,,,,,,,

m For example, our previous quadratic complexity
an? + bn+ c € O(n?) , also
3n? € O(n?) and
mn? + nlogn € O(n?)

m Common complexity classes

= O(1)

= O(n)

= O(2") it

About hardness

m Any problem with a known algorithm for solving it in
polynomial time (O(g(n)) where g(n) is a polynomial) is
called tractable

m Unfortunately many practical problems are intractable

m The most significant problem in mathematics: P=NP?

/6'/“4 ,,,,,,,,,,,,,,

