Programmeren (Ectrie)
 Lecture 2: Computing

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

What's the difference?

Stored-program computers

- Enable to write, compile, and run code on the same machine
- Implement von Neumann architecture

von Neumann architecture

- Computers have instruction sets (e.g. MOV, MUL, ADD)
- Each instruction has a binary opcode
- Numbers (integers and reals) are also just sequences of bits
- Standard computers operate with a certain number of bits (32/64)
- We give semantics to the sequences of bits to represent integers, reals, characters, opcodes, ...

Floating point numbers

- Integers are within a certain range (e.g. standard 32-bit: $\left[-2^{31}, 2^{31}-1\right]$) that contains all values
- Reals are represented as floating point numbers with a fixed base b, signed fraction f, and exponent e as:

$$
(e, f)=f \times b^{e}
$$

■ E.g. floating decimal $(b=10)$ with 8 digits can represent Plank's constant $\left(6.6261 \times 10^{-27}\right)$ as

$$
(-26,+.66261000)
$$

IEEE 754

- We still need to choose b and bit sizes for e and f
- Most processors support IEEE 754 double precision (64 bit) floating point standard with $b=2$:

$$
\text { value }=(-1)^{\text {sign }}\left(1+\sum_{i=1}^{52} b_{-i} 2^{-i}\right) \times 2^{(e-1023)}
$$

■ Java's double and Matlab's numbers are 64 bit floats

IEEE 754

Implications:

- The decimal point is floating, and precision of the fraction is $53 \log _{10} 2 \approx 15.955$
- 23000000000000000000 ok
- 23000000000000000001 not

Problems with floating point numbers (1)

Operations on floating point numbers performed on computers are neither associative nor distributive, that is,

$$
\begin{array}{r}
a+(b+c) \neq(a+b)+c, \text { for many } a, b, c \\
a *(b+c) \neq(a * b)+(a * c), \text { for many } a, b, c
\end{array}
$$

when a, b, and c are floating point numbers. For example, consider

$$
\begin{aligned}
& a=0.42 \\
& b=-0.5 \\
& c=0.08
\end{aligned}
$$

now, with IEEE 754 double-precision binary floats, we get

$$
\begin{aligned}
& (a+b)+c=-1.3878 \times 10^{-17} \\
& a+(b+c)=0
\end{aligned}
$$

- So not all numbers can be represented exactly with IEEE 754 floating point numbers
- The interval between numbers that can be represented depends on the magnitude of the number
- Floating point numbers can be thought of representing an interval around the given value (e.g. 0.42 is actually [0.42- $\left.\epsilon_{1}, 0.42+\epsilon_{2}\right]$)

Problems with floating point numbers (2)

The limited amount of bits used to store the numbers can cause under- and overflows:

$$
1.2345678+1.7654321=3
$$

due to the inherent imprecision of the floating point representation.
\Rightarrow never compare results against an exact value, rather check whether they are within a threshold ϵ :

$$
1.2345678+1.7654321-3 \leq \epsilon
$$

Problems with floating point numbers (3)

Accuracy of floating point numbers highly depends on the operations performed:

- multiplication is less precise than addition
- repeated application of addition/substraction can result in arbitrarily large errors if incorrect rounding scheme is used (though in practice it isn't)

If you need very high precision floats, don't use Matlab

Computational complexity

- The only two resources for algorithms are computation time and memory
- Computational complexity refers to their use - how complex is the algorithm given an input of size n

■ Complexity theory forms the basis for all computational sciences

■ Complexity can be analyzed by counting the amount of resources used

■ Example: adding together two integers 12345 and 53766

Insertion sort

2	3	1	5	4

■ Sort in the way card game players sort their hands

Insertion sort

2	3	1	5	4

■ Sort in the way card game players sort their hands
function $[a]=$ insertionSort(a)
for $\mathrm{j}=2$: length (a)
key $=a(j)$;
$\mathrm{i}=\mathrm{j}-1$;
while $i>0$ \&\& $a(i)>$ key
$a(i+1)=a(i) ;$
$\mathrm{i}=\mathrm{i}-1$;
end
$a(i+1)=$ key
end
end

Insertion sort: example

With romanian folk dance

Insertion sort: analysis

Assumptions:
■ We are computing with a single-processor random access machine

■ No parallel processing

- Instructions are processsed sequentially
- The machine has unlimited memory

Insertion sort: analysis

■ Memory: a constant amount of additional memory (i.e. for the temporary variables) is used - insertion sort does the sorting in place

■ Running time: count the amount of primitive operations performed

■ Primitive operations = arithmetic operations, comparisons, assignments, etc

- Exact number of CPU cycles / operation depends on compiler and hardware
- Analyze on more abstract level by counting the amount computation steps

```
    1 function [a] = insertionSort(a)
    2 for j=2:Iength(a)
        key = a(j);
        i = j-1;
        while i > 0 && a(i) > key
        a(i+1) = a(i);
        i = i - 1;
        end
    a(i+1) = key
    end
11 end
```

- Amount of times each line is executed

■ c_{i} : the cost of executing line i

- t_{j} the amount of times the while loop test on line 5 is executed

Line	2	3	4	5	6	7	9
Cost	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{9}
Times	n	$n-1$	$n-1$	$\sum_{j=2}^{n} t_{j}$	$\sum_{j=2}^{n}\left(t_{j}-1\right)$	$\sum_{j=2}^{n}\left(t_{j}-1\right)$	$n-1$

$$
\begin{aligned}
T(n)= & c_{2} n+c_{3}(n-1)+c_{4}(n-1) \\
& +c_{5} \sum_{j=2}^{n} t_{j}+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right) \\
& +c_{7} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{9}(n-1)
\end{aligned}
$$

- The running time depends on size of the input n and times the inner loop is executed t_{j}

■ $a(i) \leq a(j) \forall i<j, i, j \in\{1, \ldots, n\} \Rightarrow t_{j}=1 \forall j \in\{1, \ldots, n\}$

Best-case running time

$$
\begin{aligned}
T(n)= & c_{2} n+c_{3}(n-1)+c_{4}(n-1) \\
& +c_{5} \sum_{j=2}^{n} t_{j}+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right) \\
& +c_{7} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{9}(n-1)
\end{aligned}
$$

if $a(i) \leq a(j) \forall i<j, i, j \in\{1, \ldots, n\} \Rightarrow t_{j}=1 \forall j \in\{1, \ldots, n\}$

Best-case running time

$$
\begin{aligned}
T(n)= & c_{2} n+c_{3}(n-1)+c_{4}(n-1) \\
& +c_{5} \sum_{j=2}^{n} t_{j}+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right) \\
& +c_{7} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{9}(n-1)
\end{aligned}
$$

$$
\text { if } a(i) \leq a(j) \forall i<j, i, j \in\{1, \ldots, n\} \Rightarrow t_{j}=1 \forall j \in\{1, \ldots, n\}
$$

$$
\Rightarrow T(n)=c_{2} n+c_{3}(n-1)+c_{4}(n-1)+c_{5}(n-1)+c_{9}(n-1)
$$

$$
=\left(c_{2}+c_{3}+c_{4}+c_{5}+c_{9}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{9}\right)
$$

Best-case running time

$$
\begin{aligned}
T(n)= & c_{2} n+c_{3}(n-1)+c_{4}(n-1) \\
& +c_{5} \sum_{j=2}^{n} t_{j}+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right) \\
& +c_{7} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{9}(n-1)
\end{aligned}
$$

if $a(i) \leq a(j) \forall i<j, i, j \in\{1, \ldots, n\} \Rightarrow t_{j}=1 \forall j \in\{1, \ldots, n\}$

$$
\begin{aligned}
\Rightarrow T(n) & =c_{2} n+c_{3}(n-1)+c_{4}(n-1)+c_{5}(n-1)+c_{9}(n-1) \\
& =\left(c_{2}+c_{3}+c_{4}+c_{5}+c_{9}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{9}\right)
\end{aligned}
$$

replace $c_{2}+c_{3}+c_{4}+c_{5}+c_{9}=a$ and $c_{2}+c_{4}+c_{5}+c_{9}=b$

Best-case running time

$$
\begin{aligned}
T(n)= & c_{2} n+c_{3}(n-1)+c_{4}(n-1) \\
& +c_{5} \sum_{j=2}^{n} t_{j}+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right) \\
& +c_{7} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{9}(n-1)
\end{aligned}
$$

$$
\text { if } a(i) \leq a(j) \forall i<j, i, j \in\{1, \ldots, n\} \Rightarrow t_{j}=1 \forall j \in\{1, \ldots, n\}
$$

$$
\Rightarrow T(n)=c_{2} n+c_{3}(n-1)+c_{4}(n-1)+c_{5}(n-1)+c_{9}(n-1)
$$

$$
=\left(c_{2}+c_{3}+c_{4}+c_{5}+c_{9}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{9}\right)
$$

replace $c_{2}+c_{3}+c_{4}+c_{5}+c_{9}=a$ and $c_{2}+c_{4}+c_{5}+c_{9}=b$

$$
\Rightarrow T(n)=a n+b
$$

1 function [a] = insertionSort(a)
for $\mathrm{j}=2$: length (a)
key $=a(j)$;
$\mathrm{i}=\mathrm{j}-1$;
while $i>0$ \&\& a(i) > key
$a(i+1)=a(i) ;$
$\mathrm{i}=\mathrm{i}-1$;
end
$a(i+1)=$ key
end
11 end

If $a(i)>a(j) \forall i<j, i, j \in\{1, \ldots, n\}$
\Rightarrow in every iteration of the while loop the current element a(i) must be compared with each of the elements in the already sorted subarray $a(1), \ldots, a(i-1)$, so $t_{j}=j \forall j \in\{2, \ldots, n\}$

$$
\begin{aligned}
T(n)= & c_{2} n+c_{3}(n-1)+c_{4}(n-1)+c_{5} \sum_{j=2}^{n} j \\
& +c_{6} \sum_{j=2}^{n}(j-1)+c_{7} \sum_{j=2}^{n}(j-1)+c_{0}(n-1)
\end{aligned}
$$

note that

$$
\sum_{j=2}^{n} j=\frac{n(n+1)}{2}-1 \text { and } \sum_{j=2}^{n}(j-1)=\frac{n(n-1)}{2}
$$

$$
\begin{aligned}
T(n)= & c_{2} n+c_{3}(n-1)+c_{4}(n-1)+c_{5} \sum_{j=2}^{n} j \\
& +c_{6} \sum_{j=2}^{n}(j-1)+c_{7} \sum_{j=2}^{n}(j-1)+c_{0}(n-1)
\end{aligned}
$$

note that

$$
\begin{aligned}
\sum_{j=2}^{n} j= & \frac{n(n+1)}{2}-1 \text { and } \sum_{j=2}^{n}(j-1)=\frac{n(n-1)}{2} \\
\Rightarrow T(n)= & c_{2} n+c_{3}(n-1)+c_{4}(n-1)+c_{5}\left(\frac{n(n+1)}{2}-1\right) \\
& +\left(c_{6}+c_{7}\right)\left(\frac{n(n-1)}{2}\right)+c_{9}(n-1) \\
= & \left(\frac{c_{5}}{2}+\frac{c_{6}}{2}+\frac{c_{7}}{2}\right) n^{2} \\
& +\left(c_{2}+c_{3}+c_{4}+\frac{c_{5}}{2}-\frac{c_{6}}{2}-\frac{c_{7}}{2}+c_{9}\right) n \\
& -\left(c_{3}+c_{4}+c_{5}+c_{9}\right)
\end{aligned}
$$

Worst-case running time

$$
\begin{aligned}
T(n)= & \left(\frac{c_{5}}{2}+\frac{c_{6}}{2}+\frac{c_{7}}{2}\right) n^{2} \\
& +\left(c_{2}+c_{3}+c_{4}+\frac{c_{5}}{2}-\frac{c_{6}}{2}-\frac{c_{7}}{2}+c_{9}\right) n \\
& -\left(c_{3}+c_{4}+c_{5}+c_{9}\right)
\end{aligned}
$$

replace sets of c_{i} 's with constants a, b, and c

Worst-case running time

$$
\begin{aligned}
T(n)= & \left(\frac{c_{5}}{2}+\frac{c_{6}}{2}+\frac{c_{7}}{2}\right) n^{2} \\
& +\left(c_{2}+c_{3}+c_{4}+\frac{c_{5}}{2}-\frac{c_{6}}{2}-\frac{c_{7}}{2}+c_{9}\right) n \\
& -\left(c_{3}+c_{4}+c_{5}+c_{9}\right)
\end{aligned}
$$

replace sets of c_{i} 's with constants a, b, and c

$$
\Rightarrow T(n)=a n^{2}+b n+c
$$

Analysis: conclusions

Insertion sort

- Sorts in place - requires constant amount of memory not dependent on the input size
- Has linear best-case complexity

■ Has quadratic worst-case complexity

Worst-case analyses

Usually we are interested only in the worst-case complexity, as

- It gives us an upper-bound on how bad the algorithm can perform
- Worst-case occurs fairly often with some algorithms
- Worst-case can occur with extremely high probability when input is from real-life processes (e.g. sorting customers)

■ Algorithms are executed often, so worst case happens almost surely sometime

Running times with a computer processing $10^{9} \mathrm{ops} / \mathrm{s}$

$\mathrm{f}(\mathrm{n})$	10	100	1000	10^{4}	10^{5}	10^{6}
n	$10^{-8} \mathrm{~s}$	$10^{-7} \mathrm{~s}$	$10^{-6} \mathrm{~s}$	$10^{-5} \mathrm{~s}$	$10^{-4} \mathrm{~s}$	$10^{-3} \mathrm{~s}$
$n \log n$	$10^{-8} \mathrm{~s}$	$2.4 \times 10^{-8} \mathrm{~s}$	$2.0 \times 10^{-6} \mathrm{~s}$	$3.5 \times 10^{-4} \mathrm{~s}$	0.1 s	56 s
n^{2}	$10^{-7} \mathrm{~s}$	$10^{-5} \mathrm{~s}$	$10^{-3} \mathrm{~s}$	0.1 s	10 s	17 min
n^{3}	$10^{-6} \mathrm{~s}$	$10^{-3} \mathrm{~s}$	1 s	17 min	12 d	32 y
2^{n}	$10^{-6} \mathrm{~s}$	$4.0 \times 10^{13} \mathrm{y}$	$3.3 \times 10^{284} \mathrm{y}$			
$n!$	$3.6 \times 10^{-3} \mathrm{~s}$	$3.0 \times 10^{141} \mathrm{y}$				

Growth of functions

Typical Analysis Functions

Growth of functions

Typical Analysis Functions

Asymptotic complexity

■ Exact analysis as we did before (with c_{i} 's) is not meaningful only asymptotic complexity matters

- Given an input size $n>n_{0}$, where n_{0} is some constant value, how fast does the running time grow?
- The asymptotic behaviour of a function depends only on the highest order term, and not at all of the constants (the c's)

(a)

(b)

Coapus

- For asymptotic worst-case complexity, we use the big-O notation. Given a function $g(n)$, the set of functions

$$
O(g(n))=\left\{f(n): \exists c>0, n_{0}>0: 0 \leq f(n) \leq c g(n) \quad \forall n \geq n_{0}\right\}
$$ are asymptotically O-equivalent.

(a)

(b)
$\mathrm{O}(\mathrm{g}(\mathrm{n}))$ is the asymptotical upper bound, that is not necessary tight

- For example, our previous quadratic complexity $a n^{2}+b n+c \in O\left(n^{2}\right)$, also $3 n^{2} \in O\left(n^{2}\right)$ and $m n^{2}+n \log n \in O\left(n^{2}\right)$

■ Common complexity classes

- $\mathrm{O}(1)$
- $\mathrm{O}(\mathrm{n})$
- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- $\mathrm{O}\left(2^{n}\right)$

About hardness

- Any problem with a known algorithm for solving it in polynomial time $(\mathrm{O}(\mathrm{g}(\mathrm{n}))$ where $\mathrm{g}(\mathrm{n})$ is a polynomial) is called tractable
- Unfortunately many practical problems are intractable
- The most significant problem in mathematics: $P=N P$?

