
Programmeren (Ectrie)
Lecture 5: Linear data structures

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

Halting problem revisited

H(P)
I f P w i l l h a l t , then say ”YES ! ”
I f P w i l l not h a l t , then say ”NO! ” .

K(P)
I f ”H(P)” s a y s ”YES ! ” , then l o o p i n f i n i t e l y .
I f ”H(P)” s a y s ”NO! ” , then STOP! ”

K(K)
I f H(K) s a y s ”YES ! ” , then l o o p i n f i n i t e l y .
I f H(K) s a y s ”NO! ” , then STOP.

Array

Data structures allow to store a set of elements and guarantee
certain complexity for elementary operations (access, insert,
delete, search x, search min/max)

Arrays are the most elementary data structures

Random access: O(1)

All other operations: O(n)

Stack

Last-In First-Out access
semantics (LIFO)

Can be implemented using
an array and index of top
element

Use of stacks: call stack

When you make a method call, the new frame of execution
(local variables) is pushed to the stack

When the method exists, the local variables are simply popped
from the stack

Queue

First-In First-Out access
semantics (FIFO)

Can be implemented using
an array and indices of first
(head) and last (tail)
elements

Empty queue is denoted
with head = 0, tail = 1

4 queues (3, 7, 6, 2), 3 dequeues
(delete 3, 7 and 6), and 1
enqueue (5): contents of Q are
[2, 5].

Use of queues: simulation with (multiple) queues

Many practical problems can be modeled with queues

E.g. factory arriving material to be processed, process step 1
storage, process step 2 storage, ...

Dynamic data structures

Until now all the data structures we considered have been
static

When elements are constantly inserted / deleted, static
structures are slow (O(n))

Need for node-based dynamic structures

Linked list

Linked list is a list where each element has it’s own node, that
contains the key and a reference to the next node

Can be used to implement a stack

Pass by reference in Matlab with OO

OO-extensions and their use in passing by reference

c l a s s d e f node < h a n d l e
p r o p e r t i e s

key
n e x t

end
end

Linked list construction

c l a s s d e f l i n k e d l i s t < h a n d l e
p r o p e r t i e s

f i r s t
end

end

funct ion L = i n i t L i n k e d L i s t (v a l u e)
L = l i n k e d L i s t () ;
fNode = node () ;
fNode . key = v a l u e ;
fNode . n e x t = NaN;
L . f i r s t = fNode ;

end

Linked list traversal

funct ion node = f i n d K e y (L , key)
curNode = L . f i r s t ;
whi le (curNode != NaN)

i f (curNode . key == key)
node = curNode ;
break ;

end
curNode = curNode . n e x t ;

end
end

Linked list insert element

Linked list delete element

deleteNodeAfter(nodeOf5)

Circular linked list

Uses: round-robin scheduling of processes in multi-tasking
environments (e.g. your computer)

Complexity of linked list operations

Insert/delete element in beginning: O(1)

Insert/delete element at current iteration location: O(1)

Random access: O(n)

Search: O(n)

