Programmeren (Ectrie)

Lecture 3: Memory organization

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

/6'/“% ,,,,,,,,,,,,,,

Computer Memory Hierarchy

small size
small capacity

processor registers
very fast, very expensive

power on

immediate term
small size
small capacity

processor cache
very fast, very expensive

medium size power on random access memory
medium capacity very short term fast, affordable
small size power off flash / USB memory
large capacity short term slower, cheap
large size power off hard drives
very large capacity mid term slow, very cheap
large size power off tape backup

very large capacity long term very slow, affordable

Memory organization

m Local variables such as loop counters can possibly be stored in
registers

m All larger data structures have to be allocated to the main
memory

m The random access memory is linear and addressed using
integers pointing out the location (e.g. 0x400345CF)

/6'/“4 ,,,,,,,,,,,,,,

Matrices in Matlab

m Due to many algorithms being representable as matrix
operations, matrices are included in Matlab as a built-in data

type

a = [3, 4];
= '1';

c = axb;

m now ¢ =7

m How do we represent m x n matrices?

/6'/“4 ,,,,,,,,,,,,,,

Matrix representations: naive

(1,1 | [2] [m,]
\ \
Y
[1,1] [2,1] [m,1]
[2,2] [2,2] [m,2]

[1,n] [2,n] [m,n]

CPU caches

—
*

L1 Instruction
Cache

Main rrl'namﬂrv |

Storage Device

/6-/«»4

Matrix representations: efficient

m As the memory is linear, let's exploit that and store the
element [a, b] in index [(a — 1) x b+ n]

1 2 n [(n+1l)|(n+2)| - [(m*n)

m This is called the row-major representation; in column-major
one [a,b] isin [(b— 1) m+ a]

m In most programming languages the array indices start from 0
and the formulas are simpler

/6'/“4 ,,,,,,,,,,,,,,

Row- and column-major representations: an example

1 2 3
4 5 6
m As row-major: [1 2345 6]
m As column-major: {1425 3 6]

/6'/“% ,,,,,,,,,,,,,,

Special matrices: sparse

m If the matrix if sparse, i.e. it contains only a few elements, it
is more efficient to store only the non-zero elements

m Eg
0 00O00O
0 00O00O
00020
0 00O0O
10000

m Can be represented with ([3, 4, 2], [5, 1, 1])

/6'/“4 ,,,,,,,,,,,,,,

Special matrices: diagonal and identity

O O O O
O O O WwWOo
OO N OO
O NO O o
>~ O O O O

m Can be represented with [1, 3,

N~

7, 4]

O o oo
O O O+~ O
O O = OO
o= O OO
_ O O O o

m = /5 and can be represented with a single integer 5

/6'/“4 ,,,,,,,,,,,,,,

Matrix multiplication: naive

function C = multiply (A, B)
C = zeros(rows(A), columns(B));
for (i=1l:rows(A))
for (j=1:columns(B))
s = 0;
for (k=1:columns(A))
s =s + A(i, k) x B(k, j);
end
C(i, j) =s;
end
end
end

m Complexity?

Matrix multiplication: divide-and-conquer

m Assume that we are multiplying n X n matrices, where n is a
power of 2

m Express C = AB as

[Gi1 Gp] _ [A1 A2 } [Bii1 Bip]
Gi1 Gp Ar1 Az Bo1 Bop

that comes down to computing

Ci1=A11B11+A12B21
Ci2 =A11B12+ A12Bi1
(1 =A21B11+A5B01
G2 =A21B1o+ A58

m Proceed recursively until you multiply matrices of max size
1x1 At

< © N 9
m ~ = 9
- I
o < 1
~ © S X '
|
i
|
— n o] '
|
\
|

ol I PN
@ 3 a 4
| N © ~ o
— _..m M <

10

14

13

13

10

P]

15

*

12

1

2 mul

Complexity of divide-and-conquer multiplication

T(n)

8T(n/2) + n?

=n®+ 8((n/2)2 +8T(n/4))

= n? +8((n/2)? +8((n/4)® + 8T (n/16)))
= n® +2n° 4+ 4n*> + 8T (n/16)))

/6'/“% ,,,,,,,,,,,,,,

Complexity of divide-and-conquer multiplication

T(n)=8T(n/2) + n?
=n’+ 8((n/2)2 +8T(n/4))
= n®+8((n/2)? + 8((n/4)*> + 8T (n/16)))
= n® +2n° 4+ 4n*> + 8T (n/16)))

ith term in the series is 2/~ 1n?

/6'/“% ,,,,,,,,,,,,,,

Complexity of divide-and-conquer multiplication

T(n) =8T(n/2) + n?
=n?+8((n/2)? +8T(n/4))
= n? +8((n/2)? +8((n/4)® + 8T (n/16)))
= n® +2n° 4+ 4n*> + 8T (n/16)))
ith term in the series is 2/ ~1n?
T(n) = n®+2n° +4n + ... 42°%2270(1)
log, n

=n") 2"+ O(n'°8?)
i=0

2|og2(n+1) -1
= nzﬁ + O(n)

< n?0(2"°82") + O(n) = n*0(n) + O(n)

= 0(n®) (é'/“f

Strassen’s idea

M2 M3 M4 M5 M6 M7

M1
<11
ci1z
c27 5

- V4
27 7 4

Vs 22

Strassen’s idea

M2 M3 M4 M5 M6 M7

77 y yos
. 4 ok 7

- B2 4 /4

Now we only need to do 7 multiplications, so the complexity
becomes

T(n)=7T(n/2) + O(n?)
— O(nlog27) ~ O(n2.81)

/6'/M

Static data structures

m Matrices and arrays are static data structures in the sense
that although accessing an arbitrary element is efficient,
adding an element is not

m Example: add an element into an array

/6'/“4 ,,,,,,,,,,,,,,

Complexity of operations with matrices and arrays

For n elements
m Add element: O(n)
m Random access: O(1)

m Delete element: O(n)
Additionally, for n x n matrices:
= Multiplication: O(n3) (?)
m Inversion: as multiplication

m Determinant: O(n®) with LU decomposition

/6'/“4 ,,,,,,,,,,,,,,

