
Programmeren (Ectrie)
Lecture 2: Computing

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

What’s the difference?

Stored-program computers

Stored-program computers allow self-modifying code

Enable to write, compile, and run code on the same machine

Implement von Neumann architecture

von Neumann architecture

Numerical representation

von Neumann computers have instruction set (e.g. MOV,
MUL, ADD, LEA, ROL, ...) where for each instruction we
have an opcode that is the instruction representation in binary
format

Numbers (integers and reals) are also just a set of bits

Standard computers operate with a certain number of bits
(usually 32, although new processors are 64 bit)

We give semantics to the sequences of bits to represent
integers, reals, characters, opcodes, ...

Floating point numbers

Whereas integers are always of a certain range (e.g. standard
32-bit: [−231, 231 − 1], the limited-bit representation of real
numbers causes them to be of a certain accuracy

Reals are represented as floating point numbers. For a fixed
base b and number of digits p as

Signed fraction f
Exponent e

(e, f) = f × be

E.g. floating decimal (b = 10) with 8 digits can represent Plank’s
constant (6.6261× 10−27) as

(−26,+.66261000)

Floating point numbers

To make floating point computation easier, we represent the
numbers in a normalized format so that

|f | < 1

−bp < bpf < bp

Standard way to denote floating point numbers in exponential
format in programming languages is to present the fraction
followed by ’E’ and the exponent, e.g. the Planck’s constant
would be ’0.66261E-26’

IEEE 754

We still need to choose b, p, and bit sizes for e and f

Most processors support IEEE 754 double precision (64 bit)
floating point standard with b = 2:

value = (−1)sign(1 +
52∑
i=1

b−i2
−i)× 2(e−1023)

Java’s double and Matlab’s numbers are 64 bit floats

IEEE 754

Implications:

The decimal point is floating, and precision of the fraction is
53 log10 2 ≈ 15.955

23000000000000000000 ok

23000000000000000001 not

Problems with floating point numbers (1)

Operations on floating point numbers performed on computers are
neither associative nor distributive, that is,

a + (b + c) 6= (a + b) + c , for many a, b, c

a ∗ (b + c) 6= (a ∗ b) + (a ∗ c), for many a, b, c

when a, b, and c are floating point numbers. For example, consider

a =0.42

b =− 0.5

c =0.08

now, when computed with IEEE 754 double-precision binary floats,
we get

(a + b) + c =− 1.3878× 10−17

a + (b + c) =0

Problems with floating point numbers (1)

... as not all numbers can be represented exactly with floating
point numbers

The interval between numbers that can be represented
depends on the magnitude: with larger numbers the interval is
larger

So floating point numbers can be thought of representing an
interval around the given value (e.g. 0.42 is
[0.42− ε1, 0.42 + ε2])

Problems with floating point numbers (2)

The limited amount of bits used to store the numbers can cause
under- and overflows:

1.2345678 + 1.7654321 = 3

due to the inherent imprecision of the floating point representation
⇒ you should never compare results against an exact value, but
rather see whether they are within some threshold ε:

1.2345678 + 1.7654321− 3 ≤ ε

Problems with floating point numbers (3)

The accuracy of floating point numbers highly depends on the
operations performed.

multiplication is less precise than addition

repeated application of addition/substraction can result in
arbitrarily large errors if incorrect rounding scheme is used
(though in practice it isn’t)

If you need very high precision floats, Matlab isn’t probably the
correct language to use.

Computational complexity

The only two resources for algorithms are computation time
and memory

Computational complexity refers to their use - how complex is
the algorithm given an input of size n

Complexity theory forms the basis for all computational
sciences

Complexity can be analyzed by counting the amount of
resources used

Example: adding together two integers 12345 and 53766

Insertion sort

2 3 1 5 4

Sort in the way card game players sort their hands

funct ion i n s e r t i o n S o r t (a)
f o r j =2: length (a)

key = a (j) ;
i = j −1;
whi le i > 0 && a (i) > key

a (i +1) = a (i) ;
i = i −1;

end
a (i +1) = key
end

end

Insertion sort

2 3 1 5 4

Sort in the way card game players sort their hands

funct ion i n s e r t i o n S o r t (a)
f o r j =2: length (a)

key = a (j) ;
i = j −1;
whi le i > 0 && a (i) > key

a (i +1) = a (i) ;
i = i −1;

end
a (i +1) = key
end

end

Insertion sort: example

1 funct ion i n s e r t i o n S o r t (a)
2 f o r j =2: length (a)
3 key = a (j) ;
4 i = j −1;
5 whi le i > 0 && a (i) > key
6 a (i +1) = a (i) ;
7 i = i −1;
8 end
9 a (i +1) = key

10 end
11 end

2 3 1 5 4 starting array
2 3 1 5 4 j=2
1 2 3 5 4 j=3
1 2 3 5 4 j=4
1 2 3 4 5 j=5

Insertion sort: analysis

Assumptions:

We are computing with a single-processor random access
machine

No parallel processing

Instructions are processsed sequentially

The machine has unlimited memory

Insertion sort: analysis

Memory: a constant amount of additional memory (i.e. for
the temporary variables) is used - insertion sort does the
sorting in place

Running time: count the amount of primitive operations
performed

Primitive operations = arithmetic operations, comparisons,
assignments, etc
Exact number of CPU cycles / operation depends on compiler
and hardware
Analyze on more abstract level by counting the amount
computation steps

1 funct ion i n s e r t i o n S o r t (a)
2 f o r j =2: length (a)
3 key = a (j) ;
4 i = j −1;
5 whi le i > 0 && a (i) > key
6 a (i +1) = a (i) ;
7 i = i −1;
8 end
9 a (i +1) = key

10 end
11 end

Amount of times each line is executed

ci : the cost of executing line i

tj the amount of times the while loop test on line 5 is executed

1 funct ion i n s e r t i o n S o r t (a)
2 f o r j =2: length (a)
3 key = a (j) ;
4 i = j −1;
5 whi le i > 0 && a (i) > key
6 a (i +1) = a (i) ;
7 i = i −1;
8 end
9 a (i +1) = key

10 end
11 end

Line 2 3 4 5 6 7 8

Cost c2 c3 c4 c5 c6 c7 c8

Times n n − 1 n − 1
n∑

j=2

tj

n∑
j=2

(tj − 1)
n∑

j=2

(tj − 1) n − 1

Line 2 3 4 5 6 7 8

Cost c2 c3 c4 c5 c6 c7 c8

Times n n − 1 n − 1
n∑

j=2

tj

n∑
j=2

(tj − 1)
n∑

j=2

(tj − 1) n − 1

T (n) =c2n + c3(n − 1) + c4(n − 1)

+ c5

n∑
j=2

tj + c6

n∑
j=2

(tj − 1)

+ c7

n∑
j=2

(tj − 1) + c8(n − 1)

1 funct ion i n s e r t i o n S o r t (a)
2 f o r j =2: length (a)
3 key = a (j) ;
4 i = j −1;
5 whi le i > 0 && a (i) > key
6 a (i +1) = a (i) ;
7 i = i −1;
8 end
9 a (i +1) = key

10 end
11 end

The running time depends on size of the input n and times
the inner loop is executed tj

a(i) ≤ a(j) ∀i < j , i , j ∈ {1, . . . , n} ⇒ tj = 1 ∀j ∈ {1, . . . , n}

Best-case running time

T (n) =c2n + c3(n − 1) + c4(n − 1)

+ c5

n∑
j=2

tj + c6

n∑
j=2

(tj − 1)

+ c7

n∑
j=2

(tj − 1) + c8(n − 1)

if a(i) ≤ a(j) ∀i < j , i , j ∈ {1, . . . , n} ⇒ tj = 1 ∀j ∈ {1, . . . , n}

⇒ T (n) = c2n + c3(n − 1) + c4(n − 1) + c5(n − 1) + c8(n − 1)

= (c2 + c3 + c4 + c5 + c8)n − (c2 + c4 + c5 + c8)

replace c2 + c3 + c4 + c5 + c8 = a and c2 + c4 + c5 + c8 = b

⇒ T (n) = an + b

Best-case running time

T (n) =c2n + c3(n − 1) + c4(n − 1)

+ c5

n∑
j=2

tj + c6

n∑
j=2

(tj − 1)

+ c7

n∑
j=2

(tj − 1) + c8(n − 1)

if a(i) ≤ a(j) ∀i < j , i , j ∈ {1, . . . , n} ⇒ tj = 1 ∀j ∈ {1, . . . , n}

⇒ T (n) = c2n + c3(n − 1) + c4(n − 1) + c5(n − 1) + c8(n − 1)

= (c2 + c3 + c4 + c5 + c8)n − (c2 + c4 + c5 + c8)

replace c2 + c3 + c4 + c5 + c8 = a and c2 + c4 + c5 + c8 = b

⇒ T (n) = an + b

Best-case running time

T (n) =c2n + c3(n − 1) + c4(n − 1)

+ c5

n∑
j=2

tj + c6

n∑
j=2

(tj − 1)

+ c7

n∑
j=2

(tj − 1) + c8(n − 1)

if a(i) ≤ a(j) ∀i < j , i , j ∈ {1, . . . , n} ⇒ tj = 1 ∀j ∈ {1, . . . , n}

⇒ T (n) = c2n + c3(n − 1) + c4(n − 1) + c5(n − 1) + c8(n − 1)

= (c2 + c3 + c4 + c5 + c8)n − (c2 + c4 + c5 + c8)

replace c2 + c3 + c4 + c5 + c8 = a and c2 + c4 + c5 + c8 = b

⇒ T (n) = an + b

Best-case running time

T (n) =c2n + c3(n − 1) + c4(n − 1)

+ c5

n∑
j=2

tj + c6

n∑
j=2

(tj − 1)

+ c7

n∑
j=2

(tj − 1) + c8(n − 1)

if a(i) ≤ a(j) ∀i < j , i , j ∈ {1, . . . , n} ⇒ tj = 1 ∀j ∈ {1, . . . , n}

⇒ T (n) = c2n + c3(n − 1) + c4(n − 1) + c5(n − 1) + c8(n − 1)

= (c2 + c3 + c4 + c5 + c8)n − (c2 + c4 + c5 + c8)

replace c2 + c3 + c4 + c5 + c8 = a and c2 + c4 + c5 + c8 = b

⇒ T (n) = an + b

1 funct ion i n s e r t i o n S o r t (a)
2 f o r j =2: length (a)
3 key = a (j) ;
4 i = j −1;
5 whi le i > 0 && a (i) > key
6 a (i +1) = a (i) ;
7 i = i −1;
8 end
9 a (i +1) = key

10 end
11 end

If a(i) > a(j) ∀i < j , i , j ∈ {1, . . . , n}
⇒ in every iteration of the while loop the current element a(i)
must be compared with each of the elements in the already sorted
subarray a(1), . . . , a(i − 1), so tj = j ∀j ∈ {2, . . . , n}

T (n) =c2n + c3(n − 1) + c4(n − 1) + c5

n∑
j=2

j

+ c6

n∑
j=2

(j − 1) + c7

n∑
j=2

(j − 1) + c8(n − 1)

note that
n∑

j=2

j =
n(n + 1)

2
− 1 and

n∑
j=2

(j − 1) =
n(n − 1)

2

⇒ T (n) =c2n + c3(n − 1) + c4(n − 1) + c5(
n(n + 1)

2
− 1)

+ (c6 + c7)(
n(n − 1)

2
) + c8(n − 1)

=(
c5
2

+
c6
2

+
c7
2

)n2

+ (c2 + c3 + c4 +
c5
2
− c6

2
− c7

2
+ c8)n

− (c3 + c4 + c5 + c8)

T (n) =c2n + c3(n − 1) + c4(n − 1) + c5

n∑
j=2

j

+ c6

n∑
j=2

(j − 1) + c7

n∑
j=2

(j − 1) + c8(n − 1)

note that
n∑

j=2

j =
n(n + 1)

2
− 1 and

n∑
j=2

(j − 1) =
n(n − 1)

2

⇒ T (n) =c2n + c3(n − 1) + c4(n − 1) + c5(
n(n + 1)

2
− 1)

+ (c6 + c7)(
n(n − 1)

2
) + c8(n − 1)

=(
c5
2

+
c6
2

+
c7
2

)n2

+ (c2 + c3 + c4 +
c5
2
− c6

2
− c7

2
+ c8)n

− (c3 + c4 + c5 + c8)

Worst-case running time

T (n) =(
c5
2

+
c6
2

+
c7
2

)n2

+ (c2 + c3 + c4 +
c5
2
− c6

2
− c7

2
+ c8)n

− (c3 + c4 + c5 + c8)

replace sets of ci ’s with constants a, b, and c

⇒ T (n) = an2 + bn + c

Worst-case running time

T (n) =(
c5
2

+
c6
2

+
c7
2

)n2

+ (c2 + c3 + c4 +
c5
2
− c6

2
− c7

2
+ c8)n

− (c3 + c4 + c5 + c8)

replace sets of ci ’s with constants a, b, and c

⇒ T (n) = an2 + bn + c

Analysis: conclusions

Insertion sort

Sorts in place - requires constant amount of memory not
dependent on the input size

Has linear best-case complexity

Has quadratic worst-case complexity

Worst-case analyses

Usually we are interested only in the worst-case complexity, as

It gives us an upper-bound on how bad the algorithm can
perform

Worst-case occurs fairly often with some algorithms

Worst-case can occur with extremely high probability when
input is from real-life processes (e.g. sorting customers)

Algorithms are executed often, so worst case happens almost
surely sometime

Running times with a computer processing 109 ops/s

f(n) 10 100 1000 104 105 106

n 10−8s 10−7s 10−6s 10−5s 10−4s 10−3s

n log n 10−8s 2.4× 10−8s 2.0× 10−6s 3.5× 10−4s 0.1s 56s

n2 10−7s 10−5s 10−3s 0.1s 10s 17min

n3 10−6s 10−3s 1s 17min 12d 32y

2n 10−6s 4.0× 1013y 3.3× 10284y

n! 3.6× 10−3s 3.0× 10141y

Growth of functions

Growth of functions

Asymptotic complexity

Exact analysis as we did before (with ci ’s) is not meaningful -
only asymptotic complexity matters

Given an input size n > n0 , where n0 is some constant value,
how fast does the running time grow?

The asymptotic behaviour of a function depends only on the
highest order term, and not at all of the constants (the c ’s)

big-O notation

For asymptotic worst-case complexity, we use the big-O
notation. Given a function g(n), the set of functions

O(g(n)) = {f (n) : ∃c > 0, n0 > 0 : 0 ≤ f (n) ≤ cg(n) ∀n ≥ n0}

are asymptotically O-equivalent.

O(g(n)) is the
asymptotical upper
bound, that is not
necessary tight

big-O

For example, our previous quadratic complexity
an2 + bn + c ∈ O(n2) , also
3n2 ∈ O(n2) and
mn2 + nlogn ∈ O(n2)

Common complexity classes

O(1)
O(n)
O(n log n)
O(n2)
O(n3)
O(2n)
O(n!)

About hardness

Any problem with a known algorithm for solving it in
polynomial time (O(g(n)) where g(n) is a polynomial) is
called tractable: the algorithm grows sufficiently slow to be of
possibly pratical use

Unfortunately many practical problems in management
science are intractable

The most significant problem in mathematics: P=NP?

