
Programmeren (FEB22012)

Exercise 9

Deadline for submission: 2011-10-02 23:59 CET

This exercise is done in pairs. Submit your solution only under the
account of one of the pair members, and remember to add comments
containing names and student numbers of both pair members in all
submitted source files. In case you do not feel like coding this with
another human being, you can also do it alone. Be aware of the
following:

• Submit a ZIP file (so no .tgz, rar, and any other compression
format).

• Follow the instructions carefully, when you are asked to create
a function then you are supposed to deliver a function file and
not a script file.

• Make sure that your code has one script called main.m, which
contains the code to “start” your program. This script should
run with no errors, otherwise you are at risk of receiving 0
points for the assignment.

Introduction

In this assignment you will implement linked lists in Matlab and solve a classical
problem using your implementation of a circular single-linked list. To achieve
this, we need to apply the object-oriented extensions of Matlab.

Creating classes in Matlab is achieved similarly as writing function files (if
you use the GUI, you can select “class” for adding them from the menu). Classes
are accessed using handles that are similar to Java object references. For us-
ing classes without methods, we can define them to contain simply the fields
(properties), e.g. for class ExampleClass with a single field exampleField:

c l a s s d e f ExampleClass < handle
p r o p e r t i e s

exampleFie ld ;
end

end

Multiple field variables can be defined by separating them with commas. Now
we could instantiate this class and set the field value with:

1

>> t = ExampleClass () ;
>> t . exampleFie ld = 3 ;

Note that in this exercise we will not actually program according to the object
oriented paradigm, but just use the OO-extensions of Matlab to enable dynamic
memory allocation and pass by reference. All the linked list operations will be
implemented as separate methods.

Exercise, part 1: implementing circular linked list

In this part, you will implement linked lists in Matlab using objects. Start
by copy-pasting the linked list code from the lecture notes and modifying it
so, that you implement a circular linked list (see Figure below). Note that in
a circular linked list when the “first” node is deleted, the “first” reference of
the LinkedList object has to be updated as well. Implement also an additional
function for computing the length of the list.

key next key next

first 5 6

key next

7

After changing the implementation, make sure that you have the following
methods for operating with lists:

1. initLinkedList(value), that initializes a new linked list

2. insertIntoBeginning(L, value), that inserts value into the beginning
of the list

3. deleteNodeAfter(prevNode), that deleted the node coming after prevNode

4. listLength(L), that gives the number of elements in the linked list L

Hint: you should keep track of the first node in your list, otherwise you do not
know where the list starts. Make sure all your methods work and that you know
how to iterate through the list nodes in a circular manner.

Exercise, part 2: Joseph’s problem with linked
lists

You are now going to solve the so-called “Joseph’s problem” using a circular
linked list. Although there exists a analytical solution for the problem, we are
going to provide a numerical solution for an adapted version of the original
problem.

The problem that we consider is as follows: There are n people standing
in a circle, of whom one is designated as the “first” one. This first person is
executed (e.g. shot). After that, k next persons (going clockwise) are skipped,
and again the following person is executed. This continues until k people are

2

left. For example, for n = 5 and k = 1 first index 1 is shot, 2 skipped, 3 shot,
4 skipped, 5 shot (at which point 2 and 4 are left), 2 skipped and 4 shot. At
this point there is k = 1 person left, so the algorithm can terminate (result =
[2] survives).

Create a function safeIndexJoseph(n, k) which returns the k safe indices
to stand in when n people are standing in a circle and the executing proceeds
with skipping schedule k. You have to do this using the circular linked lists you
implemented in part 1. Create a main script that prints out the safe indices for
n ∈ {5, . . . , 20}, k ∈ {1, . . . , 5}.

3

