
Programmeren (FEB22012)

8. Exercise

Deadline for submission: 2011-10-02 23:59 CET

Instructions

Queues as a data structure are very useful in simulating various systems where events or objects arrive
according to a certain distribution, and are processed according to another. We could implement queues
as objects in Matlab, but in this exercise we will explicitly store the required information in separate
variables queue, head, and tail.

Exercise, part 1: implement the data structure

Implement the required functions for queue handling: creation of a queue, enqueuing and dequeueing
values:

function [queue , head , t a i l] = createQueue (a r r ayS i z e)
function [queue , head , t a i l] = enqueue (element , queue , head , t a i l)
function [queue , head , t a i l] = dequeue (queue , head , t a i l)

There is no need to explicitly access the next element of the queue as that is trivially available in
queue(tail). createQueue needs to create a queue stored in an array of a certain size. Enqueue adds
the given element to the queue, and dequeue removes one element from the queue. Note that all these
functions have pre-conditions: createQueue should have positive arraySize, enqueue should be allowed
only on queues with free slots in the array, and dequeue should not be called on empty queues. Document
and assert all the pre-conditions.

Exercise, part 2: simulate your grading time

As you’ve probably noticed, it takes the teaching assistants a reasonable time to grade the assignments.
To analyze this, we will make a simple queue simulation model. The amount of solutions submitted in
the first 5 exercises is:

Exercise 1 2 3 4 5

Count 90 93 68 92 86

Let us make a simplifying assumption that the exercises arrive daily according to a Poisson distribution
(with mean daily arrival time mean(count) / 7). We also assume a perfectly just world where the solutions
are graded according to first-come first-served principle. We have three teaching assistants correcting the
exercises. Each of them have been allocated 5h of grading / week (and yes, they work 7 days / week).
The time needed to grade a single exercise is exponentially distributed with mean time 15 minutes.

Implement a script for simulating the grading process. Our intention is to keep track of time it takes to
grade each exercise so that in the end of the simulation we can compute statistics of the grading times.
Also, after the 5 weeks have passed the grading should continue until all the remaining exercises in the
queue have been graded (no matter how long it takes). The simulation should look more or less like the
following pseudocode:

1

i n i t i a l i z e r equ i r ed cons tant s (a r r i v a l rate , g rad ing time , time to grade)
i n i t i a l i z e queue o f max s i z e 1024
i n i t i a l i z e day
whi le (queue i s not empty or 5 weeks have not yet passed)

i f (5 weeks have not passed yet)
sample amount o f e x e r c i s e s to a r r i v e today
add e x e r c i s e s to the queue

e n d i f
i n i t i a l i z e time l e f t to grade
whi l e (teach ing a s s i s t a n t s have time to grade

and the r e are ass ignments l e f t to grade)
t = sample grad ing time
reduce time l e f t to grade by t
s t o r e e x e r c i s e submiss ion time (queue (head)) and grading time (day)
dequeue one e x e r c i s e

endwhi le
i n c r e a s e day

endfor

After the simulation has finished you should have a matrix of values indicating for each exercise the day
it was submitted and the day it was graded. Add to the script computation and printing (to screen, with
fprintf) of the following statistics:

• Maximum time it took to grade an exercise

• Median time it took to grade an exercise

• Maximum amount of exercises there were in the queue at the end of a day

Add also plotting with a bar plot (see function bar) the queue size at the end of each day of the simulation
period.

2

