
Programmeren (FEB22012)

6. Exercise

Deadline for submission: 2011-09-25 23:59 CET

This exercise is to be done in pairs. Submit your solution in a standard way
through BB, but now only with the account of one of the pair members. Include
in the source files the names and student numbers of both of the pair. If you
have problems finding a pair or suffer from fear of social contact, you are also
allowed to make the exercise individually.

Multidimensional scaling

Data analysts typically face the problem of making sense of their data at hand,
yet many statistical techniques are available to them in order to alleviate this
issue. One of these techniques, Multidimensional Scaling (MDS), is typically
applied in order to visualize data in such a way that it allows for exploring
similarities and dissimilarities between items in the data set.

When applying MDS, items are visualized in a low-dimensional space in such
a way that the distances between the items represent the associated dissimilari-
ties as closely as possible. The extent to which distances represent dissimilarities
is typically reflected in the solution’s (normalized) stress value, which should be
minimized.

A well-known algorithm for finding the optimal coordinates is the Scaling by
MAjorizing a COmplicated Function (SMACOF) approach. The main algorithm
for the SMACOF approach is detailed in pseudocode in Algorithm 1.

In this exercise, you will be performing MDS in MATLAB on sales data by
means of the SMACOF approach as well as by using some built-in MATLAB
functions. The data is available from http://smaa.fi/tommi/courses/prog2/
data/clothes.xls. This data set contains a table with the number of times
any pair of 2 out of 12 clothing items has been bought in one purchase.

Note: the SMACOF algorithm involves many computations. Implementing
these computations by using matrix operations and matrix algebra is crucial for
execution speed and for successful completion of this exercise.

1

http://smaa.fi/tommi/courses/prog2/data/clothes.xls
http://smaa.fi/tommi/courses/prog2/data/clothes.xls


Algorithm 1: High-level pseudocode for the SMACOF algoritm.
initialize iteration at 0
initialize previous stress at ∞
calculate stress and distances for initial random coordinates
visualize initial random coordinates
while (previous stress - stress) > threshold do

update iteration
update previous stress
update coordinates
calculate stress and distances for updated coordinates
produce error if stress goes up
visualize coordinates

end

Exercise

1. In this exercise, we will use the clothes.xls data set. Our goal is to ex-
plore similarities and dissimilarities between items in this data set. MDS
is a very helpful technique here. However, in order to be able to ap-
ply this statistical technique to our data set, we first need to transform
the co-occurrence frequencies in our data set into dissimilarities. Write a
function that applies the so-called gravity model to convert co-occurrence
frequencies into dissimilarities.

(a) The input of this function should be an n × n matrix F with co-
occurrence frequencies of n items.

(b) This function should produce an n×n matrix ∆ with dissimilarities
of n items as output.

(c) According to the gravity model,

∆ij =

√
FiiFjj

Fij
, ∀i, j ∈ {1, . . . , n} . (1)

2. Create a function that applies the SMACOF algorithm for MDS in order
to assign items coordinates such that the distances between the items
reflect their dissimilarities as closely as possible.

(a) Your function should take as input:

• An n× n matrix ∆ with dissimilarities of n items.
• Descriptions of all n items.
• An n × p matrix X with initial coordinates for n items in p

dimensions.
• A threshold ε for the algorithm’s accuracy.
• A binary variable for toggling the visualization on and off.

2



(b) The function should produce as output:

• An n × p matrix X with the optimized coordinates for n items
in p dimensions.

• The total stress value σ of coordinates of all n items.

(c) The contents of this function should reflect Algorithm 1. The func-
tion should make use of three other functions, i.e., one function for
calculating the stress of a set of coordinates, another function for
updating the coordinates, and finally a function for visualizing a set
of coordinates. We will implement these functions in the next steps.

(d) If σi−1 − σi > −ε at iteration i, something must be wrong in your
SMACOF implementation, which should result in your function to
produce an error message. You can use the MATLAB function error
to do this.

3. Write a function that computes the stress of a set of coordinates with
respect to the dissimilarities of the associated items.

(a) The inputs of this function should be:

• An n× n matrix ∆ with dissimilarities of n items.
• An n×p matrix X with coordinates for n items in p dimensions.

(b) The outputs of this function should be:

• The total stress value σ of coordinates of all n items.
• An n × n matrix D with the Euclidean distances of n items to

one another in p dimensions.

(c) This function should first compute the Euclidean distances between
all n items in p dimensions, given their coordinates X. Then, the
stress σ of these distances D with respect to their associated dissim-
ilarities ∆ can be computed as

σ =

∑n
i=1

∑n
j=1 (∆ij −Dij)2∑n

i=1

∑n
j=1 ∆2

ij

(2)

(d) Hint: remember from last week that given an n× p matrix A with
n coordinates in p-dimensional space and an m × p matrix B with
m p-dimensional coordinates, the n × m matrix of their Euclidean
distances D can be computed as

D =
√

x1m + 1ny′ − 2AB′, (3)

with x an n × 1 vector where the elements represent the sum of
squared coordinates of A, y an m×1 vector with the sum of squared
coordinates of B, 1n an n× 1 vector of ones, and 1m a 1×m vector
of ones.

3



4. Create a function that updates a set of coordinates of items by exploiting
the difference between their dissimilarities and their distances.

(a) This function should take as input:

• An n×p matrix X with coordinates for n items in p dimensions.
• An n× n matrix ∆ with dissimilarities of n items.
• An n × n matrix D with the Euclidean distances of n items to

one another in p dimensions.

(b) Your function should produce as output an updated n× p matrix X
with coordinates for n items in p dimensions.

(c) This function should first construct an n× n matrix Z with

Zij =

{
−∆ij

Dij
if i 6= j and Dij > 0,

0 if i 6= j and Dij = 0,
(4)

for i, j ∈ {1, . . . , n}. The elements on the diagonal of Z should then
be computed as the negated sum of the elements on the rows, i.e.,

Zii = −
n∑

j=1,j 6=i

Zij , ∀i ∈ {1, . . . , n} . (5)

Finally, using Z, the coordinates X can be updated as

X = n−1ZX. (6)

5. Create a function that can be used to visualize up to the first three di-
mensions of a set of coordinates of items over time.

(a) Depending on your implementation, inputs for this function may be:

• An n×p matrix X with coordinates for n items in p dimensions.
• Descriptions of all n items.
• A title for your plot.

(b) The visualization of an iteration of the SMACOF algorithm may look
like the snapshot presented in Figure 1. At any rate, include labels
in your plot, use square axes, and incorporate the stress value in your
visualization.

(c) Hint: in case the number of dimensions p = 1, you can plot the
items by using the plot function in MATLAB, with the coordinates
for the second dimension set to 0. In case p = 2, you can obviously
use the plot function as well. In case p ≥ 3, you may use the plot3
function in order to plot the first three dimensions.

(d) Hint: you can add labels to your plot by using MATLAB’s text
function.

4



−20
−10

0
10

20

−50

0

50
−20

−10

0

10

20

Dimension 1

Modern pants

Colored socks

Jeans

Stylish shirt

Imported shirtCheap shirt

Expensive suit

SMACOF iteration 70: stress 0.1598

Cheap suit
Cheap tie

Cheap knitwear

Modern jacket

Expensive trad. shirt

Dimension 2

D
im

en
si

on
 3

Figure 1: Example of a visualization of an iteration of the SMACOF algorithm.

(e) Hint: prevent your animation from cluttering and slowing down
by clearing the figure before plotting an iteration. You can use the
MATLAB command cla for this.

(f) Hint: in order to be able to actually see your animation, you may
need to briefly pause the animation after plotting an iteration.

6. Write a script that:

(a) Retrieves co-occurrence frequencies and labels from clothes.xls by
using the MATLAB function xlsread.

(b) Transforms the co-occurrence frequencies into dissimilarities by ap-
plying the gravity model.

(c) Generates an initial set of random coordinates for all items in 3 di-
mensions.

(d) Optimizes the initial 3-dimensional coordinates by using your SMA-
COF function and visualizes each iteration.

(e) Optimizes the initial 3-dimensional coordinates by using MATLAB’s
built-in fminunc function to minimize your stress function. As op-
tions for this fminunc function, you can set both ‘LargeScale’ and
‘Display’ to ‘off’, whereas ‘TolFun’ can simply be your ε param-
eter. Visualize the optimized coordinates in a new figure by using
your visualization function.

5



(f) Assesses stress values and execution times for SMACOF and fminunc
for dimensionalities ranging from 1 to the number of variables in
clothes.xls (no MDS visualizations needed). Plot stress values per
number of dimensions for SMACOF and fminunc in one figure. Make
another figure that shows the execution times of both algorithms as
a function of the dimensionality.

Which number of dimensions yields the best trade-off between representa-
tive power (i.e., low stress) and interpretability (i.e., low dimensionality)?
Which method is typically faster for performing MDS?

6


