
Programmeren (FEB22012)

3. Exercises

Deadline for submission: 2011-09-11 23:59 CET

This exercise is to be done in pairs. Submit your solution in a standard way through BB,
but now only with the account of one of the pair members. Include in the source files the
names and student numbers of both of the pair. If you have problems finding a pair or suffer
from fear of social contact, you are also allowed to make the exercise individually.

Instructions / bubble sort

In the second lecture you were introduced to insertion sort with complexity O(n2). In this exercise you will
implement bubble sort for sorting the contents of an array1. Then you will compare the running times of
bubble sort with those of insertion sort and Matlab’s built-in sorting algorithm, construct computational

tests, and plot the running times of the 3 sorting algorithms with inputs of different sizes of random
arrays. In the end, you should be able to say which of these sorting algorithms is the fastest on average.

The idea of insertion sort presented in the lecture (and in lecture notes) is to iteratively go through every
element of an array and put it into the correct place in the currently sorted array (see LN-TT-22012-1
for details). The idea in bubble sort is slightly different: the array will be passed through repetitively,
and in each repetition, each pair of elements is compared with each other and swapped if they are in
an incorrect order. This traversal of the complete array is repeated until no more swaps occur. For
more information about bubble sort and a sample implementation in pseudo-code (which is an abstract,
imaginary programming language) can be found at http://en.wikipedia.org/wiki/Bubble_sort. For
a nice visualization, see http://www.youtube.com/watch?v=lyZQPjUT5B4.

Exercise / part #1

1. Implement bubble sort as a matlab function taking as a parameter an array of numbers and returning
that array sorted in an increasing order.

2. Implement insertion sort in a similar manner. You can copy-paste the code directly from LN-TT-
22012-1, page 8.

After completing the first part you should have the two sorting algorithms performing the same function-
ality. Try it in the command prompt with e.g. bubbleSort([2 4 5 4]) and insertionSort([2 4 5 4]). Matlab
has also a built-in sorting function sort. Check its documentation and make sure you know how to use
it to sort contents of an array in an ascending order.

Exercise / part #2

Now we want to assess the running times of the different sorting algorithms (bubbleSort, insertionSort,
and Matlab’s built-in sort) for sorting arrays of sizes from 10 to 1000. For this you should make a script
that:

1arrays are called vectors in Matlab slang

1



1. Iterates for the input sizes n from 10 to 1000 with a step size of 10 (so n=10, 20, 30, ...).

2. For each input size, construct an array of length n consisting of integers randomly generated from
the interval (1, n) (e.g. for n=10, a random array could be [2 3 4 1 6 5 7 9 2]). See Matlab’s built-in
function rand for this. Then for each of these arrays, assess how long it takes to run (by using
functions tic and toc):

(a) insertionSort

(b) bubbleSort

(c) Matlab’s built-in sort

3. Plot the running times of the three sorting algorithms in one graph. On the x-axis should be n,
and on the y-axis T(n). Plot the series of running times as lines with different colours. Give the
axes and the graph meaningful titles, and include a legend in the graph explaining what the three
different series represent.

Exercise / part #3

Add to your graph of running times plots of the mathematical functions f(n) = n3, f(n) = n2, f(n) = n

and f(n) = n log n. Now by looking at the graph you should have an idea of asymptotic growth rates
of the three sorting algorithms. Which complexity class does each sorting algorithm belong to? (just
answer question this for yourself, you do not need to include it in the exercise answer)

2


