
Programmeren (FEB22012)

10. Exercise

Deadline for submission: 2011-10-09 23:59 CET

This exercise is done in pairs. Submit your solution only under the
account of one of the pair members, and remember to add comments
containing names and student numbers of both pair members in all
submitted source files. In case you do not feel like coding this with
another human being, you can also do it alone. Be aware of the
following:

• Submit a ZIP file (so no .tgz, rar, or any other compression
format).

• Follow the instructions carefully, when you are asked to create
a function then you are supposed to deliver a function file and
not a script file.

• Make sure that your code has one script called main.m, which
contains the code to “start” your program. This script should
run with no errors, otherwise you are at risk of receiving 0
points for the assignment.

Introduction

In this assignment you will implement a binary tree structure, k-d tree, and use
it for classifying flowers based on four attributes using the k nearest neighbor
algorithm (k-NN). Note that the k in the two names have no relation with each
other.

K-d trees are a space-partitioning data structure used to store k-dimensional
data points. Every non-leaf node of the tree represents a hyperplane cut-
ting the space in two parts (i.e. in two half-spaces). The leaf nodes rep-
resent the partitioned areas in space. For example, a k-d tree with a root
node and two children would split the space in 2 parts based on a single at-
tribute. For more information and graphical representation of a k-d tree, see
http://en.wikipedia.org/wiki/K-d_tree.

In this exercise we will use the k nearest neighbor (k-NN) algorithm for
classifying flowers based on their sepal length, sepal width, petal length, and
petal width in three species: setosa, versicolor, and virginica. K-NN classifies
unseen data points by looking at the points in the training set, that is, a set of
flowers for which we know the species already. Based on the euclidean distances
between the training points and the new point, k nearest ones are located. The
new point (flower) will be classified to be of the species the majority of these k
points are of.

1

http://en.wikipedia.org/wiki/K-d_tree


A naive solution for finding a closest point would be to compute the distance
from the new point to each point in the training data set. If you have 100
new points to classify and a data set of 1000 points, you would have to do
100×1000 = 100000 distance computations. With a k-d tree this can be reduced
(on average) to 100 × log 1000 = 996.

Exercise part 1: implement a k-d tree

A k-d tree is created by recursively splitting on each dimension of the data. So
for example, at the root node (Point) of the tree, all points on the left will have
values smaller and all all points on the right will have values larger than the
root (for the first dimension). There are several ways to decide on the splitting
value. The method you are going to implement is to use the median of the
training data set to choose the optimal cut-off value for the splits, leading to
reasonably balanced trees.

Creating a k-d tree

First, you should implement an algorithm for constructing a k-d tree. The
pseudo-code for this part of the assignment is given in Algorithm 1. In the
end, what you should have (at least), is one function called kdtree, taking one
input: the data set matrix D (where the rows represent the points and the
columns represent the variables). The algorithm starts with dimension 1 (the
first column) and sorts the matrix on this column. Next, the median index
is determined. You should implement this in such a way that for a length of
one, the first element is chosen as the median, for a length of two, the second
element, for a length of three, also the second element, for a length four, the
third element, etc. Then, the next axis for splitting should be selected. This is
done by shuffling the axis. This means if you have four dimensions (columns),
you first start with the first, then second, then third, then forth, then back to
first, etc. Finally, the return variable is initialized. You should make a class
Point with necessary fields. On lines 8 and 9 the recursion takes places. Here
we build in the same way the tree for the left and right child of our root node
with data up until and after from the median index, respectively.

Searching in a k-d tree

Now that you are able to create a kd-tree, you need to implement search func-
tionality. For this part, you have to implement a function that finds the nearest
neighbour in a data set for a given query using a k-d tree as a data structure.

The search procedure is recursive in the sense that it traverses the tree
downwards and remembers the best point. Algorithm 2 shows the pseudo-code
for the search procedure. It requires the starting Point head and the query point
q (i.e. the root). The result is the best point (closest) from the data set and its
squared distance to the query point. The algorithm first starts by computing
the distance between the query and the root of the tree (line 1). Then, it does a
check whether or not the variables that track the ‘best’ point should be updated
(line 2). Obviously, the first time this will always happen as the variable bd is
initialized to be Inf (infinite). Next, the difference between the head and q

2



Algorithm 1 Creating a k-d tree

Input: a n× k data set D, where n is the number of points and k the dimen-
sionality (i.e., number of variables)

Output: node ret which represents the root of the k-d tree
1: axisIndex = 1
2: sort matrix D on column axisIndex
3: determine medianIndex for column axisIndex in D
4: determine nextAxis
5: initialize empty point ret
6: ret.axisSplit = axisIndex
7: ret.val = the medianIndexth row of D
8: ret.left = build recursively tree with input D(1 : (medianIndex−1), :) and

where axisIndex = nextAxis
9: ret.right = build recursively tree with input D((medianIndex− 1) : end, :)

and where axisIndex = nextAxis

is computed to check whether the left node or right node is closer by (only
considering the dimension which head uses to split), this is done on lines 3 and
4. The next step is to perform a recursive search where head becomes the node
that is closer (node close). This recursive search should be skipped if close
is empty (line 5). Finally, if away is not empty and the previously computed
difference is smaller than the best distance, then another recursive search has
to be performed with head = away. This last line is where the magic happens
in the k-d tree search (why?).

Algorithm 2 Searching in a k-d tree

Input: a k-d tree, represented by its root node head, and a query point q
Output: the vector of the best point bp, and the squared distance bd
1: initialize bp = [] and bd = Inf
2: headSD = compute Euclidean distance between head and q
3: if headSD is smaller than current bd, then update bp and bd
4: d = difference between head and q in dimension head.axisSplit
5: if d ≤ 0, close = head.left and away = head.right, otherwise close =

head.right and away = head.left
6: if close is not empty then recursive search with head = close
7: if away is not empty and d2 < bd then recursive search with head = away

Exercise part 2: classify new points based on their
nearest neighbor

The k-NN algorithm requires the value for k to be specified. We will now use
k = 1, meaning that an unseen data point will be classified to the same class as
its nearest neighbor in the training data set.

Download the data set from http://smaa.fi/tommi/courses/prog2/data/

iris.data into a directory accessible by Matlab. For more information on the
data set, see http://en.wikipedia.org/wiki/Iris_flower_data_set. The

3

http://smaa.fi/tommi/courses/prog2/data/iris.data
http://smaa.fi/tommi/courses/prog2/data/iris.data
http://en.wikipedia.org/wiki/Iris_flower_data_set


data set has the following columns:

1. sepal length in cm

2. sepal width in cm

3. petal length in cm

4. petal width in cm

5. class:

• Iris Setosa

• Iris Versicolour

• Iris Virginica

Make a script file, that:

1. Loads the data from iris.data.

2. Constructs a k-d tree with the iris.data using the four first attributes for
the k = 4 dimensions on which the splitting is done. The actual values
stored in the tree should contain the class as well.

3. Constructs 1000 points with 4 attributes having uniformly distributed
values between the minimum- and maximum ones in the data (sepal and
petal lengths and widths). Leave the class of these empty.

4. Uses the k-d tree searching procedure to find the closest point in the k-d
tree for each of these. Assign each random point to the class of its nearest
neighbor.

5. Makes two scatterplots where x-axis have the sepal length, y-axis the sepal
width, and the point itself color (blue, green, or red) indicating its class
(setosa, versicolour, or virginica). For the first plot use the points from
iris.data, and for the second one your recently classified random points.

4


