
Programming (ERIM)
Lecture 5: Programming by contract

Tommi Tervonen

Econometric Institute, Erasmus School of Economics

Programming by contract

Methods define a contract between the supplier (you) and the
consumer (you or someone else)

Contract partially defined through the signature:

funct ion a r r = s o r t A r r a y F r o m I n d e x (a r r a y , i n d e x)

Contract:

1 The index has to be in the range [1, length(array)]

(responsibility of the consumer)

2 If consumer calls the method adhering to (1), then after the
method call the following holds:
arr[index] < arr[index+1] < ... <

arr[length(array)] (responsibility of the supplier)

Programming by contract

Methods define a contract between the supplier (you) and the
consumer (you or someone else)

Contract partially defined through the signature:

funct ion a r r = s o r t A r r a y F r o m I n d e x (a r r a y , i n d e x)

Contract:

1 The index has to be in the range [1, length(array)]

(responsibility of the consumer)

2 If consumer calls the method adhering to (1), then after the
method call the following holds:
arr[index] < arr[index+1] < ... <

arr[length(array)] (responsibility of the supplier)

Pre- and post-conditions

% So r t s the a r r a y i n a s c end i ng o r d e r s t a r t i n g
% from index
%
% PRECOND: 0 < i n d e x <= l eng t h (a r r a y)
% POSTCOND: a r r (i nd ex) < . . .
% . . . < a r r (l e n g t h (a r r a y))
funct ion a r r = s o r t A r r a y F r o m I n d e x (a r r a y , i n d e x)

Responsibilities of the consumer are method pre-conditions
(“Requires”)

Responsibilities of the supplier are method post-conditions
(“Ensures”)

(PRECOND, METHOD) ⇒ POSTCOND

Violating pre-conditions

As a supplier, if the pre-condition is violated, you are not
responsible for what happens

In practice you should crash the program execution, as the
mistake is in the logic

funct ion a r r a y = s o r t F r o m I n d e x (a r r a y , i n d e x)
a s s e r t (i n d e x > 0 && i n d e x <= length (a r r a y)) ;
. . . % do the a c t u a l s o r t i n g

end

In R: stopifnot

When to use pre- and post-conditions

If you cannot handle a possible parameter value, you should
declare the accepted range as a pre-conditions

Post-conditions are often stated in a more informal manner in
the method documentations

Document post-conditions when doing more complex
programs, and when you have problems finding bugs

Example: isBurned function from the current exercise

Create a function that checks whether sets of coordinates have
been burned by any of the current fires.

Depending on how the forest fires are stored in your
application, this function should at least take as input:

1 A matrix with all sets of coordinates to be checked.

2 The matrix with information on all current fires, including the
coordinates of their centers.

The output of this function should be a vector, signalling for
each set of coordinates whether this point has been burned
(TRUE) or not (FALSE).

(PRECOND, METHOD) ⇒ POSTCOND

How do we know that METHOD ever terminates execution?
How do we know that METHOD does what it’s supposed to?

