Programming (ERIM)

Lecture 1: Introduction to programming paradigms and typing
systems

Tommi Tervonen

Econometric Institute, Erasmus School of Economics

/6'/“% ,,,,,,,,,,,,,,

Course learning objectives

After this course, you should be able to:

m Understand and use basic constructs of procedural weakly
typed programming languages (such as Matlab, R and
Python)

m Program simple computational tests and model estimation
algorithms

m Visualize test results

m Code according to the “contract programming” approach

/6'/“4 ,,,,,,,,,,,,,,

Course organization

m 8 lectures (weeks 1-4, 6-8, maybe 10)

m Theoretical contents

m Provide background for the exercises
m 8 exercise sessions (weeks 2-9)

m 7 exercises done individually or in pairs

m Come to exercises to ask questions and get help with your code

/6'/“4 ,,,,,,,,,,,,,,

Study load

m 4 ECTS = 112h

8 lectures = 8h

m 8 exercise sessions = 16h

= Independent programming 85h ~ 11 h/w

/6'/“% ,,,,,,,,,,,,,,

m Exercises: 100% (14.29% each)
m Done in pairs or individually
m Exercises will be online at the beginning of the lecture

m Strict deadline on Sundays @ 23.59 (fourth exercise will run for
2 weeks)

m Submission via BB: only the source file(s) in the root of a zip.

Include a comment in the beginning with your name(s) and
student number(s)

/6'/“4 ,,,,,,,,,,,,,,

m Do not submit anything you haven't written yourself
m Do not submit anything that is not your idea

m We will not give you answers in the tutorials, but merely help
you to find the answer

m "But | could've solved this problem myself, it was just faster
to google the solution”

/6'/“4 ,,,,,,,,,,,,,,

m Me

m You! Participate in course discussion forums in BB to get and
provide help with the exercises

/6'/“% ,,,,,,,,,,,,,,

Course contents

Week 1 Introduction to programming paradigms and weakly typed
languages
m Practicalities
Programming paradigms
Scripting languages
Types and variables

W2 Control flow, branching, loop constructs
W3 Subroutines and scoping

W4 Side effects, functions and procedures
W6 Programming by contract

W7 Test-driven development

W8 Anonymous functions and function references

W10 Version control (6.&,?' ,

m Matlab book can be useful to own for the Matlab users

m R users: Introduction to programming with R (http:
//cran.r-project.org/doc/manuals/R-intro.html)

m LN-TT-22012-3 as background material, available @
http://smaa.fi/tommi/courses/prog2/

m All course material is posted in
http://smaa.fi/tommi/courses/erimprog/, and links to

exercises also in BB
/6'/‘” ,,,,,,,,,,,,,,

http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/manuals/R-intro.html
http://smaa.fi/tommi/courses/prog2/
http://smaa.fi/tommi/courses/erimprog/

m The exercise sessions will be guided with Matlab or R

m For R users: RStudio
(http://www.rstudio.com/ide/download/desktop)

m You can also do the exercises with Python or Octave (though
visualization in Octave sucks)

/6'/“4 ,,,,,,,,,,,,,,

http://www.rstudio.com/ide/download/desktop

Q?

“The competent programmer is fully aware of the strictly limited
size of his own skull; therefore he approaches the programming
task in full humility, and among other things he avoids clever tricks
like the plague.”

E.W. Dijkstra

Programming paradigms

m Programming paradigms refer to the philosophy behind
designing programming languages

m When you know to program with 1 language of a paradigm,
others of the same paradigm are easy to learn (mostly just
syntax)

/6'/“4 ,,,,,,,,,,,,,,

Programming paradigms

Procedural / imperative paradigm (C, Pascal, Matlab, R,
Fortran, Algol, Python)

Object-oriented paradigm (Java, Smalltalk, C++ partially)

Declarative paradigm, including

m Functional programming (ML, Lisp, Haskell, Erlang, Scala,
Scheme)
m Logic programming (Prolog)

/6'/“4 ,,,,,,,,,,,,,,

Our first program: hello world

disp(’Hello World!’); message (’Hello World!’)

m Single-line script
m Contains a single statement

m Calls function disp (Matlab) / message (R) with parameter
"Hello World!"'

m 'Hello World!" is a string

/6'/“4 ,,,,,,,,,,,,,,

Compilation of languages

m Before source code can be executed, it needs to be compiled
into an executable format

m The compilation can be made

Completely in advance to a binary executable (fast)

Partially in advance to bytecode to be executed in a virtual
machine (Java, quite fast and portable)

Run-time (slow but allows easy “modify & execute” cycles)

/6'/“4 ,,,,,,,,,,,,,,

Fully compiled languages (e.g. C)

Source file 1 Source file 2 Source file 3

| Compiler |

Object file 1 Object file 2 Object file 3

Binary Executable

Bytecode compiled languages (e.g. Java)
Source file 1 @ Source file 3

Bytecode | compiler

Bytecode file 1 Bytecode file 2 Bytecode file 3

Virtual machine

/6'/“4 ,,,,,,,,,,,,,,

Runtime compiled languages (e.g. Matlab)

Compiler

l

Execution environment

/6“”“4 ,,,,,,,,,,,,,,

Scripting languages

m In scripting languages the instructions are compiled run-time
into execution statements

m Slow, as less optimization can be made

m In languages of statistical / scientific computation, you have
to understand what happens “under the hood” to make
efficient and correct code

/6'/“4 ,,,,,,,,,,,,,,

Our second program: store and print variables

X = 2; x <- 2

y = (x + 2) *x 2; y <= (x + 2) % 2

X =y + 2 % 2; Jy+ 4 X <-y + 2 x 2 # 9y + 4
X print (x)

m Script with four statements
m Statements executed one by one from top to bottom
m Variable x is declared and a value 2 is assigned to it

m (x 4+ 2) * 2 is an expression which is evaluated and its result
assigned to x

m Operation precedence: assignment is always the last,
multiplication /division before addition/substraction

/6'/“4 ,,,,,,,,,,,,,,

Introduction to types

m Typing systems form the core of programming languages -
they allow construction of abstractions

m Differences in electric currency — bits — numbers —
characters — data records/structures

/6'/“4 ,,,,,,,,,,,,,,

Types in Matlab / R

Integers: x = 2; x <= 2

Floating point numbers: x = 4.123; x <- 4.123

Strings: x = ’my string’; x <- ’my string’

Arrays: x = [1 2 3]; x <= c(1, 2, 3)

Matrices / Matlab: x = [1 2 3; 4 5 6];
Matrices / R:

x <- matrix(c(1, 2, 3, 4, 5, 6),
ncol=2, byrow=TRUE)

/6'/“4 ,,,,,,,,,,,,,,

Strong and weak typing

Strong typing: each variable has a type associated with it

int x = 2; // ok
x = 3; // ok
x = ’s’; // error

Weak typing : a single variable can be assigned varying types of
values

y = 3; % ok - no type declaration required
y = ’t’; 7 ok

/6'/“4 ,,,,,,,,,,,,,,

Type conversion in Matlab

m Matlab is a weakly typed language, and the following are valid
expressions:

) 1) ;

X + y,;

N < X

m Nowz =7

/6'/“% ,,,,,,,,,,,,,,

m This week there's no exercise
m Next week onwards: 1h lecture followed by 2h exercise

m Make sure you can run RStudio/Matlab/whatever

/6'/“% ,,,,,,,,,,,,,,

