
Programming (ERIM)

6. Exercise

Deadline for submission: 2014-12-14 23:59 CET

Introduction

In this exercise you will implement an algorithm that finds the root (intersection with the x axis) of functions.
Because each equation can be reduced to a ‘find the root of a function’ problem, this algorithm can be used
to numerically solve equations that are analytically unsolvable. The method that we will implement is the
Newton’s method (see http://en.wikipedia.org/wiki/Newton%27s_method).

The basic idea of the method is that one starts with an initial guess (e.g., x0) that is likely to be close to the
true root of the function. Using this starting point x0, the next point x1 is the root of the tangent line at x0.
At this point you might want to look at the animation at the wikipedia page to get an idea of how the method
works.

More formally, if f(x) is a real differentiable function, then the relationship between a current point xn and
the next point xn+1 can be expressed in terms of the derivative of the function:

xn+1 = xn −
f(xn)

f ′(xn)
(1)

In this equation, xn+1 is the root of the line that is tangent with f at point x0.
Using Equation (1), we can compute a series of solutions that approximate the true root of the function. The

precision of the solution can be determined by setting a threshold for the algorithm. This threshold determines
how much a solution needs to change from one iteration to another in order for the algorithm to continue.
This can be either applied to the roots (the x values) or the corresponding y values (the values of f(xn). For
example, if the algorithm reaches iteration n in which |f(xn)| is smaller than 0.0000001, one can decide to stop
iterating.

Exercise

1. Implement the Newton’s method in a test-first manner. The implementation should be well documented
and easily applicable to other problems. The implementation of the method should have the following
inputs:

• A single argument function. This function takes one argument as input and returns exactly one
value. For example, f(x) = x2 − 777 is a valid example of such a function. The part where the logic
for the Newton’s Method is implemented should be independent of the chosen function.

• A threshold δ for the root value. This value indicates when the iterations should stop. For example,
if δ = 0.01, then the algorithm should stop after it has found a solution for which |f(x)| < 0.01.

• A threshold N that defines the maximum number of iterations. This means that the algorithm should
stop when |f(xn)| < δ or n > N .

• The implementation should return the best solution x∗, i.e., for which f(x∗) is the smallest, the value
f(x∗), and the number of iterations it took to complete.

You can use an approximation for the implementation of the derivative. In other words, you can use the
following equation:

f ′(x) =
f(x+ d)− f(x)

d
(2)

where d is a small constant (e.g. d = 1× 10−5), that can be passed as a parameter.

1

http://en.wikipedia.org/wiki/Newton%27s_method

2. Add another feature to the implementation (remember to do this in a test-first manner!): the possibility
to pass a parameter p within the range [0,∞]. If p is not equal to zero, the implementation needs to print
information on the screen about each iteration. The value of p then represents the number of decimals
that should be used for the printing fractional numbers. A table like the following should be printed if
p > 0:

iter. x f(x)

0

1

The values in the columns x and f(x) should be printed with p decimals.

3. Using the above implementation, we are going to analyse the behaviour of Newton’s Method by plotting
the iteration results. Create a function which creates a plot of the different f(x) values for each iteration.
You have to modify the previous implementation so that it also returns the ‘per iteration information’
- currently it returns only the final three values (the best solution x∗, the value f(x∗), and the number
of iterations). It is up to you how you return this information. The plot should show on the x axis the
iteration number and on the y axis the f(x) value. Make a script that visualizes the process for the
function f(x) = x2(x− 1000) + 1.

2

