ERIM Open Lecture

Introduction to Parallel Computing

Tommi Tervonen

Econometric Institute, Erasmus School of Economics

/6'/“% ,,,,,,,,,,,,,,

Motivation: why parallelize?

m Estimate complex models faster (hours instead of months)
m Run computational experiments with more instances

m Perform exploratory analyses on large data sets

/6'/“4 ,,,,,,,,,,,,,,

LISA: the Dutch National Cluster

m Cores: 6528 (8 or 12-core
nodes)

m RAM: 16TB

m Peak performance: 46
Tflop/s (4.6 + 1013)

m Disk: 100TB for the /home
m OS: Debian Linux AMD64

m Bandwidth: 1600MB/sec
between nodes

Processes and threads
Inter-process communication
Synchronization

Parallel computing architectures
GPU computing

@ Examples

/6'/“% ,,,,,,,,,,,,,,

Processes and threads

m Kernel processes are the
base unit of scheduling

Process

m Processes can contain
multiple threads

m Threads within the same QE)
process share the address .~
space E=

m Threads context switch a lot
faster than processes v

m Inter-process communication

Problems with sharing an address space

void loop_over_values(int xcounter, int limit) {
assert(xcounter <= limit);
while (xcounter != limit) {

printf("%d\n", xcounter);
(xcounter)++;

}
}

/6'/“% ,,,,,,,,,,,,,,

Inter-process communication

File

Signal (kill -9 pno)

Socket (stream)

Pipe (cat file | grep tommi)

Message queue (like pipe but with packets)
Named pipe (file behaving as pipe)

Shared memory

Memory mapped file

Message passing (no sharing)

/6'/“4 ,,,,,,,,,,,,,,

Synchronization: mutual exclusion

m Mutex is a syncronization primitive that allows atomic
operations

m test-and-set (mutex)

m unset (mutex)

/6'/“% ,,,,,,,,,,,,,,

void loop_over_values(int xcounter, int limit,
mutexx m) {
while (test —and—set(m) = 0) { }

assert(xcounter <= limit);

while (xcounter != limit) {
printf("%d\n", xcounter);
(xcounter)++;

}

unset(m);

m P (proberen) to obtain one
resource (wait until one becomes
available)

m V (verhogen) to release one .
resource (possibly signal a waiting
process to restart)

m Semaphores include a queue for the
waiting processes (mostly FIFO) I I

/6“”“4 ,,,,,,,,,,,,,,

m P (proberen) to obtain one
resource (wait until one becomes
available)

m V (verhogen) to release one .
resource (possibly signal a waiting
process to restart)

m Semaphores include a queue for the
waiting processes (mostly FIFO) I I

m Counting semaphores allow to
track multiple resources

m Binary semaphores are mutexes
with process suspension instead of

busy waiting /6‘/“‘4 ,,,,,,,,,,,,,,

Critical section

m Critical sections are pieces of code that access a shared
resource (data in our case)

m Must always be terminated (simple computation)
m Below, the critical section computation can take long to

terminate
void loop_over_values(int xcounter, int limit,
semaphorex s) {
assert(xcounter <= limit);

semaphore_P(s);

while (xcounter != limit) {
printf("%d\n", counter);
(xcounter)++;

}

semaphore_V(s);

} s

m Synchronizes access with a lock object and a condition
variable

m Allow threads to give up exclusive access to a resource and
wait for a condition to be met

m In Java (synchronized keyword): thread-safe methods (only
1 thread at a time may occupy the object)

/6'/“4 ,,,,,,,,,,,,,,

barrier

time

m Barrier synchronizes multiple processes to block until all have
reached the barrier

/6“/“4 ,,,,,,,,,

Parallel computing architectures

Processor Organizations

Single Instruction, Single Instruction, Multiple Instruction, Multiple Instruction,
Single Data Stream Multiple Data Stream Single Data Stream Multiple Data Stream
(SISD) (SIMD) (MISD) (MIMD)
Uniprocessor
Vector Array Shared Memory Distributed Memory
Processor Processor (tightly coupled) (loosely coupled)
Clusters
Symmetric Nonumiform
Multiprocessor Memory
(SMP) Access

(NUMA)

GPU computing

SISD Instruction Pool SIMD Instruction Pool

—.._
Pul
—r
L L] [Pul-

PU

Data Pool
Data Pool

/6“”“4 ,,,,,,,,,,,,,,

Questions before parallelizing

Are you sure your code works?

Implement speed-crucial parts of the code in lower level
language (Java/C speedup over R/Matlab: 500x)?

m Does the implementation need to be used by others?

m Do the results need to be reproducible by reviewers?

/6'/“4 ,,,,,,,,,,,,,,

Example 1: Parameter-set parallelization in LISA

preference information preference model

udx)

xX %+ 9
1Y Y
(O

(w!

All additive value functions
compatible with preference info

Applyon A

m Computational experiments to assess the amount of preference
inferences possible using the proven lemmas and theorems,
and the amount of inferences still missing as we did not
provide necessary conditions for the multiple statement case

m 600 test instances

m https://github.com/tommite/pubs-code/tree/master/
prefinf-ejor 2

https://github.com/tommite/pubs-code/tree/master/prefinf-ejor
https://github.com/tommite/pubs-code/tree/master/prefinf-ejor

Tools of the trade: overview

m Generating the parameter set (cartesian product of
sequences): Python

m Scheduling parallel execution of 7 processes in each node:
Python

m Test script: R (some optimization through implementing
certain methods in Java)

m Cluster scheduling: Portable Batch System (PBS)

/6'/“4 ,,,,,,,,,,,,,,

#PBS —Inodes=1:ppn=7 —Iwalltime=03:00:00 —t 1—86
python executeParallel.py $PBS_ARRAYID

m Schedule with:
gqsub -d . effTests.pbs

/6'/“% ,,,,,,,,,,,,,,

Python script, page 1

import multiprocessing

from subprocess import call
import sys

from itertools import product

SCRIPT="test .R’

NRPROC=7

instld = sys.argv[1]

startlndex = (int(instld)—1) x NRPROC

Script calling function
def callScript(parms):
parStr = ' '.join(map(str, parms))
print " Starting with parameters ", parStr

call ("R —vanilla —args " 4+ parStr + " <" +
SCRIPT, shell=True)

Python script, page 2

Define the parameter set
alts = [10, 20, 50]

crit = [5]

nrpref = range(2, 41, 2)

instances = range (1, 11)

allTasks = list(product(alts, crit, nrpref, instances))

myTasks = allTasks[startindex:(startlndex+NRPROC)]

Start processing in parallel

pool = multiprocessing.Pool(processes=NRPROC)

print "Making computational tests for instance ID ", instld,
r = pool.map_async(callScript, myTasks)

r.wait () # Wait on the results

... Load libraries

Read arguments

args <— commandArgs(trailingOnly = TRUE)
nalts <— as.integer(args[1])

ncrit <— as.integer(args[2])

npref <— as.integer(args[3])

instance <— as.integer(args[4])

stopifnot (length(args) — 4)

rm(args)

HHH

##

... Make actual tests

save('row’', file=paste(' fastror’', nalts, \
ncrit, npref, instance, sep='—"))

Output @ LISA

m Results for tests that completed within 3 hours

m For each job: effTests.pbs.o[ID]-[SUBID] (stdout) and
effTests.pbs.e[ID]-[SUBID] (stderr)

m stdout file including SARA epilogue with information on job
start and end times

m Copy results files to own computer and analyze results locally

/6'/“4 ,,,,,,,,,,,,,,

Elementary tools @ LISA

m gsub: submit a PBS script

m showq -u myuserid: see your active, idle, and blocked jobs
(limit of 4000h walltime)

m gdel jobid: remove job from scheduling (terminate with
SIGTERM and SIGKILL if executing)

m disparm: another way to handle large parameter sets (not
very handy IMO)

m mpiexec: mpi execution of jobs (more of this later)

/6'/“4 ,,,,,,,,,,,,,,

Example 2: GPU parallelized importance sampling

The purpose is to simulate model parameters 6 from the posterior
density f(0) = f(6|data):

f(0) is not simple to simulate from = Simulate M draws from
g(60) instead

Approximate function of interest E(h(6)):
J h(O) g (0)do LM h(g0)u(60))
| X5 e(0)do b o w(e®)

E(h(9)) =

where 0() is generated from a density with distribution g(6).

m Evaluations f(6) and g(6) are independent = direct
parallelization is possible

m Computation of each f(6) can be slow

Importance Sampling applied to the GARCH(p,q) model

ve = h%e, e~ NID(0,1), t=1,...,T

p q
he=0"+> aiy? i+ Bihej
i=1 j=1

S&P 500 data, Posterior density evaluation:
15657 observations.

F(0ly) = | o1 © 06,0, he) - if he > 0,ve
0, otherwise

p q
he =0+ aiyz;+ > Bihe
i—1 =1

where ¢ (yt, 0, ht) is the normal density pdf
with mean 0, variance h;. /6“,“”

Parallelizing GARCH(p,q) density evaluation

Inf(0) =—

if YF o+ Zj-’zl Bj <1, aj >0,Vi, B; >0,V then
Inf <0
t* = max(p, q).
h1:h2:...:ht*:%z;lyt2

fort—(t*+1)—> Tdo
he = 0%+ 320 g iyl + 3000 Bibe
end for
fort=(t*+1)— T do
Inf=Inf—}in(2rh) - 1%
end for
end if
return Inf

m Parallelization only possible on the MC iterations

m Speed gains possible through smart memory use /{
2afuny

Speedups with different implementations

g | o matabGPu ; o o cpu
= & 7. geicru o o gpu
= o glei GPU o s |
=] =1
s o
g
5
£
3 o
g A 8
S
o
o
2
s - 5
R g 27
s =7 g
=
]

g 2 |
g g
£

]

o

g 84

g

: .
5

g

g

g

3

0
I

0
I

T T T T T T T T T T T T T
5000 10000 15000 20000 25000 30000 2000 4000 6000 8000 10000 12000 14000 16000

size(data) size(data)

Figure : Instrumental variable model Figure : Garch(1,1) GPU vs CPU in
gleiCPU/GPU/MatlabGPU vs glei
Matlab CPU

OpenMPI

Message Passing Interface (MPI) library

m Processes have unique identifiers and can obtain the total
amount of procs (compare with the earlier example)

m Processes belong to groups and can communicate with other
processses in the same group

Single node vs multiple nodes (multiple jobs with a limited
amount of nodes get scheduled faster into execution)

/6'/“4 ,,,,,,,,,,,,,,

Scientific communication relies on evidence that cannot
be entirely included in publications, but the rise of
computational science has added a new layer of
inaccessibility.

[.]

We argue that, with some exceptions, anything less than
the release of source programs is intolerable for results
that depend on computation.

The vagaries of hardware, software and natural language
will always ensure that exact reproducibility remains
uncertain, but withholding code increases the chances
that efforts to reproduce results will fail.

Ince, Hatton, and Graham-Cumming, Nature 482 (2012)

Q?

tervonen@ese.eur.nl

